Geometrical Optics

EXERCISES

ELEMENTARY

Q. 1

Q. 2 (4)

$\delta=120^{\circ}$ Anticlockwise $=\left(360^{\circ}-120^{\circ}\right)$ clockwise
Q. 3
Q. 4 (3)

Mirror height $=$ man height
$=\frac{160}{2}=80$
Q. 5
(3)
$\mathrm{n}=\frac{360^{\circ}}{\theta}-1=\frac{360^{\circ}}{60}-1=\frac{300^{\circ}}{60}$
$\mathrm{n}=5$
Q. 6
(B)

Lateral inversion refers to inverted image of object when kept in front of mirror.
Image of HOX appears same as HOX.
Q. 7 (3)
$\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$
$\frac{1}{v}+\frac{1}{-f}=\frac{1}{f}$
$\mathrm{v}=\frac{\mathrm{f}}{2}$
Q. 8 (4)
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}+\frac{1}{-40}=\frac{1}{-20}$
$\mathrm{v}=-40 \mathrm{~cm}$
$m=\frac{-v}{u}=-\frac{-(-40)}{40}=1$
Q. 9
(3)

Q. 10 (1)
$\mathrm{v}=2 \mathrm{u}$
$\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$
$\mathrm{u}=-30 \mathrm{~cm}$
Q. 11
(A)

By using mirror formula
$\mathrm{u}=+\mathrm{x} ; \mathrm{f}=-\mathrm{f}$
$\frac{1}{v}=\frac{1}{-f}-\frac{1}{x}$
$\frac{1}{v}=\frac{1}{v}=\frac{-(x+f)}{x f}=-v e($ always)
so if object virtual, image always real.
Q. 12 (3)
$\lambda=420$
$\lambda_{\mathrm{w}}=\frac{\lambda}{\mu}=\frac{420}{4} \times 3=315 \mathrm{~nm}$
Q. 13 (4)

Velocity and wavelength change but frequency remains same.
Q. 14 (1)
$\mathrm{x}=\frac{24}{\frac{1}{1} / \frac{4}{3}}=\frac{24}{\left(\frac{3}{4}\right)}=\frac{24 \times 4}{3}=32 \mathrm{~cm}$
Q. 15 (1)
$\mu=\frac{\mathrm{h}}{\mathrm{h}^{\prime}} \Rightarrow \mathrm{h}^{\prime}=\frac{8}{4 / 3}=6 \mathrm{~m}$

Q. 16 (4)

For TIR medium at refraction must be rarer.
Q. 17 (3)

$$
\begin{aligned}
& \frac{3}{2} \sin \mathrm{C}=\frac{4}{3} \sin 90 \\
& \Rightarrow \quad \mathrm{C}=\sin ^{-1}\left(\frac{8}{9}\right)
\end{aligned}
$$

Q. 18 (3)
$\mathrm{n} \propto \frac{1}{\mathrm{v}} \propto \frac{1}{\lambda}$
Q. 19 (4)

We know that $\theta_{\mathrm{C}}=\sin ^{-1} \frac{1}{\mu_{\text {glass }}}$
and $\mu_{\text {glass }}$ depends on wavelength of light

$$
\mu_{\text {glass }} \propto \frac{1}{\lambda}
$$

When λ is minimum the μ will be maximum \& hence θ_{C} will be minimum.
λ is minimum for voilet hence θ_{C} is minimum for voilet light.
Q. 20 (3)
$\mu=\frac{\sin \left[\left(\delta_{\text {min }}+\mathrm{A}\right) / 2\right]}{\sin (\mathrm{A} / 2)}$
$\frac{\sin \left(\frac{60+30}{2}\right)}{\sin (30)}=\frac{1 \times 2}{\sqrt{2}}=\sqrt{2}$

Q. 21 (1)

$$
\mu_{\mathrm{blue}}>\mu_{\mathrm{red}}
$$

Q. 22 (2)
$\mu \propto \frac{1}{\lambda}, \lambda_{r}>\lambda_{v}$
Q. 23 (1)
$\sqrt{2} \sin 30^{\circ}=\sin \mathrm{e}$
$\mathrm{e}=45^{\circ}$
Deviation $=45^{\circ}-30^{\circ}=15^{\circ}$
Q. 24 (2)

$$
\begin{aligned}
& \frac{n_{R}-n_{i}}{R}=\frac{n_{R}}{v}-\frac{n_{i}}{u} \\
& \frac{2-1}{10}=\frac{2}{v}-\frac{1}{-20} \quad \Rightarrow \quad v=40 \mathrm{~cm}
\end{aligned}
$$

Q. 31 (1)

$$
\begin{align*}
\mathrm{P} & =\mathrm{P}_{1}+\mathrm{P}_{2} \tag{3}\\
& =+4+(-3) \\
& =+1
\end{align*}
$$

Q. 32 (3)
$\mathrm{P}_{\mathrm{L}}=\mathrm{P}_{1}+\mathrm{P}_{2}$
$P_{L}=\frac{1}{f_{L}}$
Q. 33 (1)
$\omega=\left(\frac{\mu_{\mathrm{v}}-\mu_{\mathrm{r}}}{\mu_{\mathrm{y}}-1}\right)$
Q. 34 (1)
$\omega=\left(\frac{1.62-1.42}{1.5-1}\right)$
$=\frac{0.2}{0.5}=\frac{4}{10}=0.4$
Q. 35 (2)

$$
\omega=\frac{\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}}{\left(\frac{\mathrm{n}_{\mathrm{v}}+\mathrm{n}_{\mathrm{r}}}{2}\right)-1}=\frac{6}{25} .
$$

Q. 36 (3)

 $\delta \propto(\mu-1) \Rightarrow \mu_{R}$ is least so δ_{R} is least.Q. 37 (2)

Angular dispersion does not depends upon dispersive power
Q. 38 (4)
$M P=\left(1+\frac{D}{f}\right)=\left(1+\frac{25}{5}\right)=6$
Q. 39 (2)

For normal adjustment
$m=-\frac{f_{0}}{f_{e}}$
When final image is at least distance of distinct vision from eyepiece,

$$
\mathrm{m}^{\prime}=-\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}\left(1+\frac{\mathrm{f}_{\mathrm{e}}}{\mathrm{~d}}\right)=10\left(1+\frac{5}{25}\right)=12
$$

Magnifying power of a microscope $\mathrm{m} \propto \frac{1}{\mathrm{f}}$
Since $\mathrm{f}_{\text {violet }}<\mathrm{f}_{\text {red }} ; \therefore \mathrm{m}_{\text {violet }}>\mathrm{m}_{\text {red }}$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (2)

All the reflected rays meet at a point, when produced backwards.

Q. 5
 Q.

Q. 6
Q. 7

Q. 2
Q. 3
Q. 4
(2)

final ray is II to first mirror.

Q. 40 (2)

For a compound microscope $m \propto \frac{1}{\mathrm{f}_{\mathrm{o}} \mathrm{f}_{\mathrm{e}}}$

In $\triangle \mathrm{ABC} 90^{\circ}+3 \theta=180^{\circ} \Rightarrow \theta=30^{\circ}$

Q. 9

(3)

(i)

(ii)

From figure (i) and (ii) it is clear that if the mirror moves distance ' A ' then the image moves a distance ' 2 A '.
Therefore Amplitude of SHM of image $=2 \mathrm{~A}$

Q. 10 (3)

If time in the clock is $\mathrm{T}_{1} \&$ time in image clock is T_{2} then.
$\mathrm{T}_{1}+\mathrm{T}_{2}=12: 00: 00$
$4: 25: 37+\mathrm{T}_{2}=12: 00: 00$
$\mathrm{T}_{2}=07: 34: 37$
Q. 11 (A)

A plane mirror forms inverted image of object line perpendicular to it.

3: 25
Object

8:35
Image
Q. 12 (D)

Deviation produced by plane mirror is given by $\delta=180-2 \mathrm{i}$
here $\mathrm{i}=90-60=30^{\circ}$ $\delta=180-60=120^{\circ}$

Q. 13 (3)

Taking first reflection by A.

Taking first reflection by B

Q. 14
(B)

From the following figure we can see that incident \& reflected ray are parallel to one another.

Q. 15 (2)

Perpendicular distance between object \& mirror is equal to perpendicular distance between image \& mirror.
Initially the separation between object and image is 200 cm . After 6 s the mirror has moved 30 cm towards the object. Hence object-mirror separation is 70 cm . So object image separation is 140 cm .
Q. 16

By image formations

Q. 17
(3)

All the images formed by two plane.
Mirror inclined to each other form images which lie on a circle.
(C)

First reflection $=3$
Second reflection $=3$
Third reflection $=1$
Total $=7$

Q. 19 (A)

By the formula for the number of image formed $\frac{360}{\theta}-1$ where θ is angle between the mirror.

No. of images $=\frac{360}{\theta}-1=5$
Q. 20 (B)

Only concave mirror forms larger image of an object.

Q. 21 (4)

Given $\frac{-\mathrm{v}}{\mathrm{u}}= \pm 2 \Rightarrow \mathrm{v}= \pm 2$
from $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\pm \frac{1}{2 u}+\frac{1}{u}=\frac{1}{-f}$
after solving $u=-30,-10 \mathrm{~cm}$
Q. 22 (A)

$\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{10}-\frac{1}{(-20)}=+\frac{3}{20} ; v=+\frac{20}{3}$
cm
$I=-\frac{v}{u} \times O=-\frac{\frac{20}{3}}{(-20)} \times 1=\frac{1}{3}$
\therefore The distance between tip of the object and image
is $=\mathrm{AC}=\sqrt{(\mathrm{BC})^{2}+(\mathrm{AB})^{2}}$
$S=\sqrt{\left(20+\frac{20}{3}\right)^{2}+\left(1-\frac{1}{3}\right)^{2}}=\sqrt{\frac{6404}{9}} \mathrm{~cm}$

Q. 23

(3)

Only a portion of incident light is reflected by mirror and rest is transmitted in mid water. So intensity of reflected light is less than intensity of incident light \& hence image formed is less bright.

Q. 24

(3)

only in above two cases image moves towards mirror.
Q. 25
Q. 26
Q. 27

(3)
$\frac{\mathrm{I}}{\mathrm{O}}=-\frac{\mathrm{v}}{\mathrm{u}}$
If O and I are on same sides of PA. $\frac{\mathrm{I}}{\mathrm{O}}$ will be positive which implies v and u will be of opposite signs. Similarly if O and I are on opp. sides, $\frac{\mathrm{I}}{\mathrm{O}}$ will be -ve which implies v and u will have same sign.
If O is on $\mathrm{PA}, \mathrm{I}=\left(-\frac{\mathrm{V}}{\mathrm{u}}\right)(\mathrm{O})=0$
$\Rightarrow \quad \mathrm{I}$ will also be on. P.A.
Q. 29
$\frac{1}{-f}=\frac{1}{-v}+\frac{1}{-u} \Rightarrow \frac{1}{v}=\frac{-1}{u}+\frac{1}{f}$

Slope $=-1$
intercept $=\frac{1}{f}($ positive $)$
Q. 30 (A)

For real inverted image formed by concave mirror.
$\mathrm{v}=-\mathrm{ve}, \mathrm{u}=-\mathrm{ve} \quad \mathrm{f}=-\mathrm{ve}$
$\Rightarrow \frac{u}{f} \& \frac{v}{f} \quad$ are positive
$\Rightarrow \quad A$ is right answer.

2nd Method,

$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\Rightarrow \frac{1}{v / f}+\frac{1}{u / f}=1 \Rightarrow \frac{1}{y}+\frac{1}{x}=1$
$\Rightarrow \quad x y=x+y$
$\Rightarrow \quad x y-x-y+1=1 \Rightarrow(x-1)(y-1)=1$ Hence
(A)

Q. 31
 (4)

So diameter of the image $=\mathrm{f} \alpha$
$=10 \times\left(1 \times \frac{\pi}{180}\right)=\frac{\pi}{18}$
Q. 32 (2)

Using mirror formula
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$

Here $u=-f, f=+f$
$\frac{1}{v}+\frac{1}{(-f)}=\frac{1}{f}$
$\Rightarrow \mathrm{v}=\frac{\mathrm{f}}{2}$
Q. 33 (1)

Using mirror formula
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
Here we have a virtual object so sign of u is positive.

Here
$u=20$
$\frac{1}{v}+\frac{1}{20}=\frac{1}{20} \Rightarrow \frac{1}{v}=0$
$\mathrm{v}=\infty$
Q. 34
(2)

Taking $u=-2 \mathrm{f} \& \mathrm{f}=+\mathrm{f}$
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}+\frac{1}{-2 f}=\frac{1}{f}$
$\Rightarrow \frac{1}{v}=\frac{1}{f}+\frac{1}{2 f}=\frac{2+1}{2 f}$
$m=-\frac{v}{u}=\frac{-2 f / 3}{-2 f}=\frac{1}{3}$
Q. 35
(2)

Magnification is -3 because image is real \& inverted.
$\mathrm{m}=\frac{-\mathrm{V}}{\mathrm{u}}$
$-3=\frac{-\mathrm{v}}{\mathrm{u}}$
$\mathrm{v}=3 \mathrm{u}$.
given $\mathrm{u}=-20 \mathrm{~cm}$
$\mathrm{v}=-60 \mathrm{~cm}$

By using mirror formula
$\frac{1}{60}-\frac{1}{20}=\frac{1}{f}$
$\mathrm{f}=-15 \mathrm{~cm}$

Here $u=-30 \mathrm{~cm}, \mathrm{f}=-15 \mathrm{~cm}$ object is at centre of curvature \Rightarrow image will be real and of same size.
Q. 37 (2)

Using mirror formula $\frac{h_{i}}{h_{0}}=\frac{-v}{u}$
Given $\frac{h_{i}}{h_{0}}=\frac{1}{2}=-\frac{v}{u}$
hence $\mathrm{v}=-\frac{\mathrm{u}}{2}$
given
$\mathrm{u}=-40 \Rightarrow \mathrm{v}=20$
Using mirror formula
$-\frac{1}{40}+\frac{1}{20}=\frac{1}{f}$
$\frac{1}{f}=\frac{1}{40}$
$\mathrm{f}=40$
convex mirror with focal length $=40 \mathrm{~cm}$

Q. 38 (2)

Given
$m=+2=-\frac{v}{u}$
$\mathrm{v}=-2 \mathrm{u}$
Using mirror formula
$\frac{-1}{2 \mathrm{u}}+\frac{1}{\mathrm{u}}=\frac{1}{10}$
$\frac{1}{2 \mathrm{u}}=\frac{1}{10} \mathrm{u}=5 \mathrm{~cm}$
Ans.

Q. 39 (1)

Incorrect statement
A concave mirror forms only virtual image for any position of real object.
Q. 40 (B)

In convex mirror Image is not at infinity (∞)
Q. 41 (B)

Using mirror formula
From the data given we get
$\mathrm{v}=+10, \mathrm{u}=-50$
$\frac{1}{10}-\frac{1}{50}=\frac{1}{f} \Rightarrow f=\frac{50}{4}$
$R=\frac{50}{2}=25 \mathrm{~cm}$
Q. 42 (B)

I_{1} is the image formed by concave mirror.
For reflection by concave mirror
$u=-x, v=-(45-x), \quad f=-10 \mathrm{~cm}$,
$\frac{1}{-10}=\frac{1}{-(45-x)}+\frac{1}{-x}$
$\frac{1}{10}=\frac{x+45-x}{x(45-x)} \Rightarrow x^{2}-45 x+450=0 \Rightarrow x=15$
$\mathrm{cm}, 30 \mathrm{~cm}$
but $\mathrm{x}=30 \mathrm{~cm}$ is not acceptable because $\mathrm{x}<22.5$
cm.
(D)

Given
$\mathrm{m}=\frac{\mathrm{h}_{\mathrm{i}}}{\mathrm{h}_{0}}=\frac{\mathrm{h}}{\mathrm{nh}}=\frac{1}{\mathrm{n}}=-\frac{\mathrm{v}}{\mathrm{u}}$
$v=-\frac{u}{n}$
Using mirror formula
$-\frac{n}{u}+\frac{1}{u}=\frac{1}{f}=-\left(\frac{n-1}{u}\right)=\frac{1}{f}$
$u=-f(n-1)$
$|\mathrm{u}|=\mathrm{f}(\mathrm{n}-1)$
Q. 44
(2)
$\mu=\frac{\lambda_{V}}{\lambda_{\mathrm{m}}}=\frac{6000}{4000}=1.5$
(3)
$\mathrm{i}=2 \mathrm{r}$
$1 \sin \mathrm{i}=\mathrm{n} \sin \mathrm{r}$
$\Rightarrow 2 \sin \mathrm{i} / 2 \cos \mathrm{i} / 2=\mathrm{n} \sin \mathrm{i} / 2$
$\Rightarrow \quad \cos \mathrm{i} / 2=(\mathrm{n} / 2)$
$\Rightarrow \quad \mathrm{i}=2 \cos ^{-1}(\mathrm{n} / 2)$

Displacement $=\frac{t \sin (i-r)}{\cos r}$
and $1 \sin \mathrm{i}=\mathrm{n} \times \sin \mathrm{r}$
Since i and r are small angles. and $i=n r$
Displacement $=\mathrm{t}(\mathrm{i}-\mathrm{r})$
\therefore Displacement $=\mathrm{t} \mathrm{i}\left(1-\frac{\mathrm{r}}{\mathrm{i}}\right)$
$=\mathrm{t} \theta\left(1-\frac{1}{\mathrm{n}}\right)=\frac{\mathrm{t} \theta(\mathrm{n}-1)}{\mathrm{n}}$
Q. 47 (1)
$r+r^{\prime}=90^{\circ} \Rightarrow r^{\prime}=(90-r)$
$\mu_{1} \sin r=\mu_{2} \cos r$

$\tan \mathrm{r}=\frac{\mu_{2}}{\mu_{1}}$
Critical angle $=\sin ^{-1} \frac{\mu_{2}}{\mu_{1}}=\sin ^{-1}(\tan r)$
Q. 48 (1)
Q. 49 (1)

$$
\begin{aligned}
& \mathrm{n}_{\text {quartz }}=2 ; \mathrm{n}_{\text {glycerine }}=\frac{4}{3} \\
& \Rightarrow \frac{n_{\text {quartz }}}{n_{\text {glycerine }}}=\frac{2}{4 / 3}=\frac{3}{2}=\mu_{\text {rel }}
\end{aligned}
$$

shift $=\mathrm{t}\left(1-\frac{1}{\mu_{\mathrm{rel}}}\right)=18\left(1-\frac{1}{3 / 2}\right)=6 \mathrm{~cm}$
(3)

From the formula

$$
\frac{\text { Appartent } \text { depth }}{\text { Real depth }}=\frac{\mathrm{n}_{\text {air }}}{\mathrm{n}_{\text {glass }}}
$$

Apparent depth $=$ Real depth $\times \frac{\mathrm{n}_{\text {air }}}{\mathrm{n}_{\text {glass }}}$
The letter which appear least raised has maximum Apparent depth and hence it has minimum μ for glass.
$\mu \propto \frac{1}{\lambda}$
for μ to be minimum λ should be maximum which is for Red.
Q. 51
Q. 52
Q. 53
Q. 54
Q. 55
Q. 56

$$
\begin{align*}
& \frac{d^{\prime}}{d}=\frac{x}{18}=\mu \tag{1}\\
& x=18 \times \frac{4}{3}=24 m
\end{align*}
$$

(1)

$\Rightarrow \frac{d y}{d t}=\frac{4}{3} \frac{d x}{d t}=8 \mathrm{~m} / \mathrm{sec}$
(A)

Sun has elliptical shape when it ireses and sets due to the phenomenon of atmospheric refraction.
(C)

Real depth $=\mathrm{d}=1 \mathrm{~m}$ Virtual depth $=d^{\prime}=0.9 \mathrm{~m}$
$\frac{d^{\prime}}{d}=\frac{1}{\mu}$
$\mu=\frac{1}{0.9}=\frac{10}{9}$
(1)
$\sin \theta=\frac{1}{\mu}=\frac{C_{A}}{C_{B}} \Rightarrow C_{B}=\frac{V}{\sin \theta}$
(4)

$\tan \theta_{\mathrm{C}}=\frac{\mathrm{R}}{12}$
A ray of light intering at 90° from rarer medium makes an angle of refaction equal to critical angle in the denser medium and critical angle is given by
$\theta_{C}=\sin ^{-1} \frac{3}{4}$
$\theta_{C}=\tan ^{-1} \frac{3}{\sqrt{7}}$
Equation (1) \& (2)
$\frac{3}{\sqrt{7}}=\frac{R}{12} \Rightarrow R=\frac{12 \times 3}{\sqrt{7}}$
Q. 57
(3)

$\frac{\sin i}{\sin 30^{\circ}}=\sqrt{2} \Rightarrow \sin \mathrm{i}=\sqrt{2} \times \frac{1}{2}=\frac{1}{\sqrt{2}} \Rightarrow \mathrm{i}=45^{\circ}$.
(B)

are small $\quad \mathrm{i}=\mu \mathrm{A}$
(C)
$\delta=A\left(\frac{\mathrm{n}_{\mathrm{p}}}{\mathrm{n}_{\mathrm{s}}}-1\right) \Rightarrow \delta \alpha A$ and $\delta \alpha\left(\frac{\mathrm{n}_{\mathrm{p}}}{\mathrm{n}_{\mathrm{s}}}-1\right)$

$$
\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R} \quad \frac{\mu_{2}}{v}-\frac{\mu_{1}}{-R}=\frac{\mu_{2}-\mu_{1}}{-R}
$$

Q. 61
(B)

For minimum deviation $i_{\text {min }}=e$
and $r_{1}=\frac{A}{2}=r_{2}=r$
$\delta=\mathrm{i}+\mathrm{e}-\mathrm{A}=2\left(\mathrm{i}_{\text {min }}-\mathrm{r}\right)=38^{\circ}$
... (1)
Now
$44^{\circ}=42^{\circ}+62-2 \mathrm{r} \Rightarrow \mathrm{r}=30^{\circ}$
... (2)
From (1) and (2)

$$
\begin{equation*}
\mathrm{i}_{\min }=49^{\circ} \tag{2}
\end{equation*}
$$

Q. 62

(2)

From the formula
$\delta=\mathrm{i}+\mathrm{e}-\mathrm{A}$
$\delta=50+40-60=30^{\circ}$
$\delta_{\text {min }}<30^{\circ}$.

Q. 63
$\mathrm{v}=-\mathrm{R}$ for all values of μ.

The incident angle is greater than critical angle so ray will suffer TIR.
$\delta=\pi-2 \theta$ (in case of reflection)
$\delta=180-120=60^{\circ}$
Q. 64 (4)

Given angle of incidence I_{1}
Given angle of emergence I_{2}
Condition for minimum devidation

$$
\mathrm{i}=\mathrm{e} \quad \Rightarrow \therefore \mathrm{I}_{1}=\mathrm{I}_{2}
$$

Q. 65 (1)

$\delta=30^{\circ}=\mathrm{i}+\mathrm{e}-\mathrm{A}$
$60+\mathrm{e}-30=30$
$\mathrm{e}=0$
Q. 66
Q. 67
(C)
$\mu \sin \theta_{C}=1$
$\theta_{C}=\sin ^{-1}\left(\frac{1}{\mu}\right)$
$\mu=\left(\frac{1}{\sin \theta_{C}}\right)$
$\theta_{\mathrm{C}}<\theta$
$\sin \theta_{\mathrm{C}}<\sin \theta$
$\frac{1}{\mu}<\frac{1}{\sqrt{2}}$
$\mu>\sqrt{2}$.

Q. 68 (C)
 Q.

Normal incidence
$\mathrm{i}=0, \mathrm{r}_{1}=0, \mathrm{r}_{2}=\mathrm{A}=60^{\circ}$
$\sin C=\frac{1}{\mu}=\frac{2}{3}$
$C=42$
(1)

For minimum deviation
$r_{1}=r_{2}=r \Rightarrow 2 r=A$
$\mathrm{r}=\frac{\mathrm{A}}{2}=30^{\circ}$
Now from Snell's law
$1 \sin \mathrm{i}=\sqrt{2} \sin 30^{\circ}$
$\mathrm{i}=45^{\circ}$

Q. 69
(2)

Applying Snell's law on surface of incidence $\theta=\sin ^{-}$
${ }_{1}\left(\frac{\sin 60}{\sqrt{3}}\right)$

$\phi=180-[60+\theta]$
$\phi=180-\left[60^{\circ}+\sin ^{-1}\left(\frac{\sin 60^{\circ}}{\sqrt{3}}\right)\right]$
$=180^{\circ}-[60+30]=90^{\circ}$
Q. 70
(1)

Considering refraction at the curved surface,

$$
\begin{aligned}
& u=-20 ; \mu_{2}=1 \\
& \mu_{1}=3 / 2 ; \mathrm{R}=+20
\end{aligned}
$$

applying $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
$\Rightarrow \frac{1}{v}-\frac{3 / 2}{-20}=\frac{1-3 / 2}{20} \Rightarrow v=-10$
i.e. 10 cm below the curved surface or 10 cm above the actual position of flower.
(1)

$$
\begin{aligned}
& \frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \Rightarrow \frac{1}{-24}=(1.5-1)\left(\frac{1}{2 R}-\frac{1}{R}\right) \\
& \Rightarrow \frac{1}{-24}=\frac{1}{2}\left(-\frac{1}{2 R}\right) \\
& R=6 \mathrm{~cm} \Rightarrow 2 R=12 \mathrm{~cm}
\end{aligned}
$$

Q. 72
(1)

Given $\mathrm{R}_{\mathrm{A}}=0.9 \mathrm{R}_{\mathrm{B}}$
$\frac{1}{f_{A}}=\frac{1}{f_{B}}$
$(1.63-1) \frac{2}{R_{A}}=\left(x_{B}-1\right) \frac{2}{R_{B}}$
$\mathrm{X}_{\mathrm{B}}=1.7$
Q. 73 (3)

Lens changes its behaviour if R.I. of surrounding becomes greater than R.I. of lens. $\mu_{\text {lens }}<1.33$

Q. 74 (4)

Image of sun is formed in the focal plane. So,

Diameter of image $=$
$\mathrm{f} \theta=\frac{100 \times 0.5^{0}}{180^{\circ}} \times \pi \times 10 \mathrm{~mm}=9$.
Q. 75 (D)

For vertical erect image by diverging lens.
u, v and f are negative
$\therefore \quad \frac{u}{f}=+v e$ and $\frac{v}{f}=+v e$
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u} 1=\frac{f}{v}-\frac{f}{u} \frac{1}{y}=\frac{1}{x}+1$
$y=\frac{x}{x+1}$ since $x \& y$ are + ve graph lies in first quadrant.
Also, at $\mathrm{x}=0, \mathrm{y}=0$ and at $\mathrm{x}=\infty,, \mathrm{y}=1$
Q. 76
(A)

Using the given formula
$\delta=(n-1) A$
and $r_{1}+r_{2}=A$
and for $\delta_{\text {min }} r_{1}=r_{2}=r=A / 2$
Hence $\delta_{\text {min }}=\mathrm{r}$.
Q. 77
(2)

$\frac{1}{10}=\frac{1}{v}-\frac{1}{(-15)} \Rightarrow v=+30 \mathrm{~cm}$
for small object $|\mathrm{dv}|=\frac{v^{2}}{u^{2}}|d u|$
$=\left(\frac{30}{15}\right)^{2} \times 1=4 \mathrm{~mm}$
Q. 78
(1)
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\mathrm{m}=\frac{\mathrm{v}}{\mathrm{u}}$
from (1) and (2) $m=\frac{f}{f+u}$
here $m=-\frac{18}{2}=-9$ \{only real images can be formed on the screen, which is inverted

$$
\begin{array}{ll}
\therefore & -9=\frac{f}{f+(-10)} \\
\therefore & -9 f+90=\mathrm{f} \\
& 10 \mathrm{f}=90 \\
& \mathrm{f}=9 \mathrm{~cm}
\end{array}
$$

(4)

We know that $\mathrm{P}=\mathrm{IA} \& \mathrm{P} \times \mathrm{t}=\mathrm{E}$
Hence $I A=\frac{E}{t}$
Initially energy/sec $=\mathrm{I} \times \pi\left(\frac{\mathrm{d}}{2}\right)^{2}=\frac{\pi \mathrm{d}^{2} \mathrm{I}}{4}$
Now energy/sec $=I\left[\pi\left(\frac{d}{2}\right)^{2}-\pi\left(\frac{d}{4}\right)^{2}\right]$
$=\mathrm{I} \pi \mathrm{d}^{2}\left[\frac{3}{16}\right]$
So, Now $\frac{\text { Final Intensity }}{\text { Initial Intensity }}=\frac{I \pi d^{2} 3 / 16}{I \pi d^{2} / 4}=\frac{3}{4}$
Focus will not change.
Q. 81
Q. 82
Q. 83

Distance between lens is $\mathrm{f}_{1}+\mathrm{f}_{2}$
(2)

The rays coming from infinity parallel to principal axis and paraxial meet on focus after refraction and the rays originating from focus of the lens originate parallel to principal axis afer refraction.
(4)
$\mathrm{f}_{\mathrm{A}}=\mathrm{f}_{\mathrm{B}}=\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\text {net }} \Rightarrow \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\text {net }}=\mathrm{P}$
(1)

Using the formula $P=\frac{1}{f(\text { in } m)}$
$\mathrm{p}_{1}=2 \mathrm{D}$
$\mathrm{f}_{1}=\frac{100}{2}=+50 \mathrm{~cm}$
$\mathrm{f}_{2}=-10$
$\mathrm{f}_{2}=-100 \mathrm{~cm}$
$\frac{1}{f_{\text {eq }}}=\left[\frac{1}{f_{1}}-\frac{1}{f_{2}}\right]$
$=\left[\frac{1}{50}-\frac{1}{100}\right]=\left[\frac{2-1}{100}\right]=\frac{1}{100}$
$\mathrm{f}_{\text {eq }}=100 \mathrm{~cm}$
Q. 85
(1)

Q. 87
Q. 88
(1)

We know that on cutting the lens into two parts perpendicular to its principal axis power of the two parts will be $\mathrm{P} / 2$ each. Let initial power of lens be P.

Then $\left(\mathrm{P}_{1}\right)_{\mathrm{f}}=\left(\mathrm{P}_{2}\right)_{\mathrm{f}}=\mathrm{P} / 2$
$P_{f}=\left(P_{1}\right)_{\mathrm{f}}=\left(\mathrm{P}_{2}\right)_{\mathrm{f}}=\mathrm{P} \quad \therefore \quad \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}}$
No change in power hence no change in focal length.
(4)

$\frac{1}{f_{1}}=\left(\frac{3}{2}-1\right)\left(\frac{-1}{10}-\frac{1}{15}\right)=-\frac{1}{12} ; \frac{1}{f_{2}}=\left(\frac{4}{3}-1\right)$
$\left(\frac{2}{15}\right)=\left(\frac{2}{45}\right) ; \frac{1}{f_{m}}=-\frac{2}{15}$
$\Rightarrow \quad \frac{1}{f_{\ell}}=\frac{1}{f_{1}}+\frac{1}{f_{2}} \frac{1}{f_{\text {eq }}}=\frac{1}{f_{m}}-\frac{2}{f_{\ell}}=-\frac{1}{18}$
$\Rightarrow \mathrm{f}_{\mathrm{eq}}=-18 \mathrm{~cm}$.
So, the combination behaves as a concave mirror
(2)

$\frac{1}{-10}=\frac{2}{-R}-\frac{2}{f_{\ell}}$
$\frac{2}{R}=\frac{1}{10}-\frac{2}{56}=\frac{56-20}{560}=\frac{36}{560}$
$\frac{1}{R}=\frac{18}{560}$
$(\mu-1) \frac{18}{560}=\frac{1}{56}$
$\mu-1=\frac{10}{18}$
$\mu=1+\frac{10}{18}=\frac{28}{18}=\frac{14}{9}$.
(A)
$\cdots{ }_{R} \lambda_{\infty}+$
$\frac{1}{\mathrm{f}}=\frac{1}{\infty}-\frac{2}{\mathrm{f}_{\ell}}=-\frac{2}{\mathrm{f}_{\ell}}=\frac{1}{-28}$

$$
\begin{equation*}
\mathrm{f}_{\ell}=56 \mathrm{~cm} \Rightarrow(\mu-1)\left(\frac{1}{\mathrm{R}}\right)=\frac{1}{56} . \tag{i}
\end{equation*}
$$

$$
\left(\frac{14}{9}-1\right) \frac{1}{R}=\frac{1}{56}=\frac{280}{9} \mathrm{~cm}
$$

Q. 89 (3)

$\frac{1}{\mathrm{~F}}=\frac{1}{\mathrm{f}_{\mathrm{m}}}-\frac{2}{\mathrm{f}_{\mathrm{L}}}=0-\frac{2}{-10} \Rightarrow \mathrm{~F}=5$
Q. 90 (4)
$\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{f}_{1}}+\frac{1}{\mathrm{f}_{2}}-\frac{\mathrm{d}}{\mathrm{f}_{1} \mathrm{f}_{2}}=0$
$=\frac{1}{25}+\frac{1}{-20}-\frac{\mathrm{d}}{-500}=0$
$=\frac{20-25}{500}=-\frac{\mathrm{d}}{500}$
$\mathrm{d}=5 \mathrm{~cm}$.

Q. 91

(B)

The focal length of mirror formed will be $f_{m}=R /$ 2

$\mathrm{f}_{\mathrm{m}}=-11 \mathrm{~cm}$
[-ve sign as concave mirror is formed]
$\mathrm{f}_{\ell}=20 \mathrm{~cm}$
$\frac{1}{f_{\text {eq }}}=\frac{1}{f_{m}}-2\left[\frac{1}{f_{\ell}}\right]$
$=\frac{-1}{11}-\frac{-2}{20}=\frac{-10-11}{110}$
$f_{e q}=\frac{-110}{21}$
Q. 92 (B)

For case 1
$\mathrm{u}=-\mathrm{u}_{1} \Rightarrow \mathrm{v}=-\mathrm{k} \mathrm{u}_{1} \quad \Rightarrow \mathrm{f}=-\mathrm{f}$
$\frac{1}{\mathrm{ku}_{1}}+\frac{1}{\mathrm{u}_{1}}=\frac{1}{\mathrm{f}}$
For case 2
$\mathrm{u}=-\mathrm{u}_{2} \Rightarrow \mathrm{v}=\mathrm{ku}_{2} \quad \Rightarrow \mathrm{f}=-\mathrm{f}$
$-\frac{1}{\mathrm{ku}_{2}}+\frac{1}{\mathrm{u}_{2}}=\frac{1}{\mathrm{f}}$
On solving (1) \& (2)
$\mathrm{f}=\frac{1}{2}\left(\mathrm{u}_{1}+\mathrm{u}_{2}\right)$
Q. 93 (C)

From the formula
$h_{0}=\sqrt{h_{1} \times h_{2}}=\sqrt{8 \times 12.5}=10 \mathrm{~cm}$
Q. 94 (D)

All are true.
Q. 95 (A)

Answer is A because A net angle of dispersion by each surface slope is equal to zero.
Q. 96 (D) ω is property of material.
Q. 97 (D)

Dispersion will not occur for a monochromatic light.
Q. 98 (2)
$\omega=\frac{\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}}{\left(\frac{\mathrm{n}_{\mathrm{v}}+\mathrm{n}_{\mathrm{r}}}{2}\right)-1}=\frac{6}{25}$.
Q. 99 (1)
$1.6333-1=1.6161=0.0172$
$\mathrm{n}_{\mathrm{y}}-1$
$\frac{1.6333-1.6161}{1.6247-1}=0.276$
Q. 100 (2)

Angular dispersion does not depends upon dispersive power

Q. 101 (2)

Ray of Red light bends minimum because it has maximum $\lambda \&$ minimum μ.
Q. 102 (A)

$$
\frac{\omega_{1}}{f_{1}}+\frac{\omega_{2}}{f_{2}}=0
$$

$$
\frac{1}{f_{1}}=\frac{-\omega_{2}}{\omega_{1}} \times \frac{1}{f_{2}}\left(\because \frac{\omega_{1}}{\omega_{2}}=\frac{2}{1}\right)
$$

$$
\frac{1}{f_{1}}=\frac{-2}{f_{2}}
$$

$$
\Rightarrow \frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{10} \Rightarrow \frac{-2}{f_{2}}+\frac{1}{f_{2}}=\frac{1}{10}
$$

$$
\Rightarrow \mathrm{f}_{2}=-10 \mathrm{~cm} \Rightarrow \mathrm{f}_{1}=5 \mathrm{~cm}
$$

Q. 103
(A)

$\sin C=\frac{1}{\mu}$
for red $\mathrm{C}>45^{\circ}$
Q. 104 (B)
$\frac{1}{f_{1}}+\frac{1}{f_{2}}=+v e$
$\frac{\omega_{1}}{f_{1}}+\frac{\omega_{2}}{f_{2}}=0 \Rightarrow \frac{\omega_{1}}{f_{1}}=\frac{-\omega_{2}}{f_{2}}$
$\omega_{2}<\omega_{1} \Rightarrow\left|f_{2}\right|<\left|f_{1}\right|$
Q. 105 (2)

By constitution of simple microscope we can observe it
Q. 106 (4)
$\operatorname{MP}=\left(1+\frac{\mathrm{D}}{\mathrm{f}}\right)=\left(1+\frac{25}{5}\right)=6$
Q. 107 (3)
Q. 108 (3)
Q. 109 (3)

In normal adjustment
$m=-\frac{f_{0}}{f_{e}}$
so $50=-\frac{100}{\mathrm{f}_{\mathrm{e}}} \Rightarrow \mathrm{f}_{\mathrm{e}}=-2 \mathrm{~cm}$
(\because eyepiece is concave lens) and $L=f_{0}+f_{e}=100-2=98 \mathrm{~cm}$
Q. 110 (2)
$\gamma=$ magnifying power
$\gamma=1+\frac{D}{F}$
$=1+\frac{25}{\mathrm{f}}$
Q. 111 (4)
Q. 112 (1)
$m=1+\frac{D}{f}$
Q. 113 (4)
Q. 114 (2)

For normal adjustment
$m=-\frac{f_{0}}{f_{e}}$
When final image is at least distance of distinct vision from eyepiece,
$\mathrm{m}^{\prime}=-\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}\left(1+\frac{\mathrm{f}_{\mathrm{e}}}{\mathrm{d}}\right)=10\left(1+\frac{5}{25}\right)=12$
Q. 115 (2)
$\mathrm{m}=\frac{-\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}$
$\mathrm{m}=10 \times 20=200 \mathrm{~cm}$
Q. 116 (4)
$\mathrm{f}=\frac{1}{\mathrm{p}}=\frac{1}{2}$ metre
$\mathrm{f}=0.5 \mathrm{~m}$ this is positive so lense is convex lense.
Q. 117 (C)

By using $m_{\infty}=\frac{\left(L_{\infty}-f_{0}-f_{e}\right) \cdot D}{f_{0} f_{e}}$
$\Rightarrow 45=\frac{\left(\mathrm{L}_{\infty}-1-5\right) \times 25}{1 \times 5} \Rightarrow \mathrm{~L}_{\infty}=15 \mathrm{~cm}$
Q. 118 (2)

For a compound microscope $m \propto \frac{1}{\mathrm{f}_{\mathrm{o}} \mathrm{f}_{\mathrm{e}}}$

Q. 119 (2)

In microscope final image formed is enlarged which in turn increases the visual angle.
Q. 120 (4)

Magnification of a compound microscope is given by
$\mathrm{m}=\frac{\mathrm{v}_{0}}{\mathrm{u}_{0}} \times \frac{\mathrm{D}}{\mathrm{u}_{\mathrm{e}}} \Rightarrow|\mathrm{m}|=\mathrm{m}_{0} \times \mathrm{m}_{\mathrm{e}}$
Q. 121 (3)

Magnifying power of a microscope $m \propto \frac{1}{f}$
Since $\mathrm{f}_{\text {violet }}<\mathrm{f}_{\text {red }} ; \therefore \mathrm{m}_{\text {violet }}>\mathrm{m}_{\text {red }}$
Q. 122 (1)
$L_{\infty}=v_{0}+f_{e} \Rightarrow 14=v_{0}+5 \Rightarrow v_{0}=9 \mathrm{~cm}$
Magnifying power of microscope for relaxed eye
$\mathrm{m}=\frac{\mathrm{v}_{0}}{\mathrm{u}_{0}} \cdot \frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}$ or $25=\frac{9}{\mathrm{u}_{0}} \cdot \frac{25}{5}$ or $\mathrm{u}_{0}=\frac{9}{5}=1.8 \mathrm{~cm}$
Q. 123 (2)
$\mathrm{m}_{\infty}=\frac{\mathrm{v}_{0}}{\mathrm{u}_{0}} \times \frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}$

From $\frac{1}{f_{0}}=\frac{1}{\mathrm{v}_{0}}-\frac{1}{\mathrm{u}_{0}}$
$\Rightarrow \frac{1}{(+1.2)}=\frac{1}{\mathrm{v}_{0}}-\frac{1}{(-1.25)} \Rightarrow \mathrm{v}_{0}=30 \mathrm{~cm}$
$\therefore\left|\mathrm{m}_{\infty}\right|=\frac{30}{1.25} \times \frac{25}{3}=200$
$\therefore\left|\mathrm{m}_{\infty}\right|=\frac{30}{1.25} \times \frac{25}{3}=200$

Q. 124 (1)

When the final image is at the least distance of distinct vision, then
$m=-\frac{f_{0}}{f_{e}}\left(1+\frac{f_{e}}{D}\right)=\frac{200}{5}\left(1+\frac{5}{25}\right)=\frac{200 \times 6}{5 \times 5}=-48$

When the final image is at infinity, then
$\mathrm{m}=-\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}=\frac{200}{5}=-40$
Q. 125 (1)

In terrestrial telescope erecting lens absorbs a part of light, so less constant image. But binocular lens gives the proper three dimensional image.
Q. 126 (4)

In this case $|m|=\frac{f_{0}}{f_{e}}=5$
and length of telescope $=f_{0}+f_{e}=36$
Solving (i) and (ii), we get $\mathrm{f}_{\mathrm{e}}=6 \mathrm{~cm}, \mathrm{f}_{\mathrm{o}}=30 \mathrm{~cm}$
Q. 127 (3)
$\mathrm{f}_{\mathrm{o}}=\frac{1}{1.25}=0.8 \mathrm{~m}$ and $\mathrm{f}_{\mathrm{e}}=\frac{1}{-20}=-0.05 \mathrm{~m}$
$\therefore\left|\mathrm{L}_{\infty}\right|=\left|\mathrm{f}_{\mathrm{o}}\right|-\left|\mathrm{f}_{\mathrm{e}}\right|=0.8-0.05=0.75 \mathrm{~m}=75 \mathrm{~cm}$
and $\left|m_{\infty}\right|=\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}=\frac{0.8}{0.05}=16$
Q. 128 (3)

In normal adjustment
$\mathrm{m}=-\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}$
so $50=-\frac{100}{\mathrm{f}_{\mathrm{e}}} \Rightarrow \quad \mathrm{f}_{\mathrm{e}}=-2 \mathrm{~cm}$
(\because eyepiece is concave lens) and $L=f_{0}+f_{e}=100-2=98 \mathrm{~cm}$
Q. 129 (4)

In this case $|m|=\frac{f_{0}}{f_{e}}=5$
and length of telescope $=f_{0}+f_{e}=36$
Solving (i) and (ii), we get $f_{e}=6 \mathrm{~cm}, \mathrm{f}_{\mathrm{o}}=30 \mathrm{~cm}$

OBJECTIVE QUESTIONS

Q. 1
(B)

Let A'B' be the image of tower AB. The foot of tower coincides with foot of image. Let the mirror be CD then from the given condition and from $\Delta C A B$.
$\tan 45^{\circ}=\frac{\mathrm{h}}{60} \Rightarrow \mathrm{~h}=60 \mathrm{~m}$
(C)

M_{1} moves on line parallel to the mirrors so to find out where M_{2} will be able to see image of M_{1} we have to find the total length where M_{1} is visible of M_{2} so rays originate from M_{1} \& after reflection meet at M_{2}. By using similar triangles. We find total visible length is equal to $(3 \mathrm{~L}+3 \mathrm{~L})=6 \mathrm{~L}$.

Hence time duration will be $=\frac{\text { Distance }}{\text { speed }}=\frac{6 \mathrm{~L}}{\mathrm{u}}$

Q. 3 (C)

Lets assume that a width of $x(c m)$ is visible to man then from similar triangles.
$\Delta \mathrm{DEC} \sim \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$

$$
\frac{250}{x}=\frac{50}{10} \Rightarrow x=50 \mathrm{~cm}
$$

Q. 4
(B)

When mirror is rotated with angular speed ω, the reflected ray rotates with angular speed 2ω (= 36 $\mathrm{rad} / \mathrm{s}$)
speed of the spot $=\left|\frac{\mathrm{dh}}{\mathrm{dt}}\right|=\left|\frac{\mathrm{d}}{\mathrm{dt}}(10 \cot \theta)\right|$
$=\left|-10 \operatorname{cosec}^{2} \theta \frac{\mathrm{~d} \theta}{\mathrm{dt}}\right|=\left|-\frac{10}{(0.6)^{2}} \times 36\right|$ $=1000 \mathrm{~m} / \mathrm{s}$.
Q. 5
(D)

Let AB be the object whose image formed by plane mirror $C D$ is $A^{\prime} \mathrm{B}^{\prime}$. The portion visible to the object can be drawn as shown in the ray diagram and EF is the length visible to him.
To calculate EF $: \Delta \mathrm{AGC} \sim \Delta \mathrm{AA}^{\prime} \mathrm{E}^{\prime} \& \Delta \mathrm{AGD} \sim \Delta$ $A^{\prime}{ }^{\prime}{ }^{\prime}$
In $\quad \Delta \mathrm{AGC} \& \Delta \mathrm{AA}^{\prime} \mathrm{E}^{\prime}$
In $\Delta \mathrm{AGD} \& \Delta \mathrm{AA}^{\prime} \mathrm{F}^{\prime}$

$$
\frac{A G}{G C}=\frac{A A^{\prime}}{A^{\prime} E^{\prime}} \quad \frac{A G}{G D}=\frac{A A^{\prime}}{A^{\prime} F^{\prime}}
$$

$$
\frac{x}{0.4}=\frac{2 x}{A^{\prime} E^{\prime}}
$$

$$
\frac{x}{0.7}=\frac{2 x}{A^{\prime} F^{\prime}}
$$

$\mathrm{A}^{\prime} \mathrm{E}^{\prime}=0.8$
$\mathrm{A}^{\prime} \mathrm{F}^{\prime}=1.4$
Now A'F' - A'E' $=\mathrm{E}^{\prime} \mathrm{F}^{\prime}=\mathrm{EF}$
$1.4-0.8=0.6=\mathrm{EF}$

Q. 6

(A)

Let AB be the street lamp of ht 3 h and CD be the man of hieght h.
From $\triangle \mathrm{ABE}$ and $\Delta \mathrm{CDE}$
$\frac{B E}{A B}=\frac{D E}{C D}$
The rate at which shadow is increasing is $\frac{\mathrm{dy}}{\mathrm{dt}}$.

Q. 7

Let $A B$ be the boy with his eye level at E and $A^{\prime} B^{\prime}$ be the image then the visible portion is AH. Δ EID $\sim \Delta$ EE'H'
$\frac{E I}{I D}=\frac{E E^{\prime}}{E^{\prime} H}$
Now we know that $E E '=2 \mathrm{EI}, \mathrm{ID}=0.6 \mathrm{~m}$
\& $\mathrm{AH}=\mathrm{A}^{\prime} \mathrm{H}^{\prime}=\mathrm{A}^{\prime} \mathrm{E}^{\prime}+\mathrm{E}^{\prime} \mathrm{H}^{\prime}$
$\mathrm{E}^{\prime} \mathrm{H}=1.2$ And $\mathrm{AH}=1.2+0.1=1.3 \mathrm{~m}$.
Hence boy cannot see his feet.

Q. 8

(B)

We know that the component of velocity parallel to mirror remains same for image but for perpendicular component.

$V_{I}=-V_{0}$
Now to find relative velocity $\vec{V}_{12}=\vec{V}_{1}-\vec{V}_{2}$ where \vec{V}_{12} is relative velocity \vec{V}_{1} is velocity of image (1) $\& \vec{V}_{2}$ is velocity of image (2).

$\vec{V}_{12}=2 \sin \beta$ on performing vector subtraction.
Q. 9
(B)

We know that from formula $V_{m}=\frac{V_{I}+V_{0}}{2}$
where $\mathrm{V}_{\mathrm{m}}=$ Velocity of mirror
$\mathrm{V}_{\mathrm{m}}=$ Velocity of image
$\mathrm{V}_{\mathrm{m}}=$ Velocity of object
We can write velocity of image for first mirror after Ist reflection

$$
\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}
$$

For second reflection this velocity becomes velocity of object.

$$
\begin{aligned}
& -\mathrm{V}=\frac{2 \mathrm{~V}+\mathrm{V}_{\mathrm{I}}}{2} \\
& \mathrm{~V}_{\mathrm{I}}=-4 \mathrm{~V} \\
& \left|\mathrm{~V}_{\mathrm{I}}\right|=4 \mathrm{~V}
\end{aligned}
$$

Thus after $\mathrm{n}^{\text {th }}$ reflection

$$
\mathrm{V}_{\mathrm{I}}=2 \mathrm{NV}
$$

Q. 10
(B)

Component of velocity of object \perp to mirror follows the condition.
$\mathrm{V}_{\mathrm{IM}}=-\mathrm{V}_{\mathrm{OM}}$ [for z component only $]$
$\mathrm{V}_{\mathrm{I}}-8=-[5-8]$
$\mathrm{V}_{\mathrm{I}}=11 \hat{\mathrm{k}}$
The remaining components remain same as that of the object so $V_{I}=3 \hat{i}+4 \hat{j}+11 \hat{k}$
Q. 11
(C)
$v=\frac{u f}{u-f}=\frac{(-15) \times(-10)}{-15+10}=-30 \mathrm{~cm}$,
$\mathrm{m}=-\frac{\mathrm{v}}{\mathrm{u}}=-2 \quad \therefore \mathrm{~A}^{\prime} \mathrm{B}^{\prime}=\mathrm{C}^{\prime} \mathrm{D}^{\prime}=2 \times 1=2 \mathrm{~mm}$
Now $\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{A}^{\prime} \mathrm{D}^{\prime}}{\mathrm{AD}}=\frac{\mathrm{v}^{2}}{\mathrm{u}^{2}}=4$
$\Rightarrow \mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{A}^{\prime} \mathrm{D}^{\prime}=4 \mathrm{~mm}$
\therefore Perimeter length $=2+2+4+4=\mathbf{1 2} \mathbf{~ m m ~ A n s . ~}$
Q. 12
(C)

Using mirror formula
$\because \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{1}{v}+\frac{1}{-20}=\frac{1}{-12}$
$v=-30 \mathrm{~cm}$ real.
$\frac{d v}{d t}=\frac{-v^{2}}{u^{2}} v_{0 m}$
$\left(\mathrm{V}_{\mathrm{I}}-0\right)=\frac{-\mathrm{v}^{2}}{\mathrm{u}^{2}}\left(\mathrm{~V}_{0}-0\right)$
$V_{I}=-\left(\frac{30}{20}\right)^{2} u$
$V_{I}=-9 \mathrm{~cm} / \mathrm{s}$ towards right.
So away from the mirror.
Q. 13 (B)

Using mirror formula
$\frac{h_{i}}{h_{0}}=\frac{-v}{u}=\frac{-u f}{u(u-f)}$
$h_{i}=\frac{-f}{(u-f)} h_{0}$
$\frac{d h_{i}}{d t}=\frac{-f}{u-f} \frac{d h_{0}}{d t}$
$\mathrm{V}_{\mathrm{I}}=\frac{-20}{-15-(-20 / 2)} \times 2=-4 \mathrm{~mm} / \mathrm{s}$
Q. 14 (C)

$\mathrm{u}=-25 \mathrm{~cm}$
$\mathrm{f}=-20 \mathrm{~cm}$
$\mathrm{v}=-100 \mathrm{~cm}$
Using mirror formula
$\frac{d v}{d t}=-\left(\frac{100}{25}\right)^{2} \times 10=-160 \hat{i}$
$\frac{h_{i}}{h_{0}}=\frac{-v}{u}=\frac{f}{(f-u)}$
$\frac{d h_{i}}{d t}=\frac{-20 \times 1}{(-20+25)^{2}} \times-10=8 \hat{j} \mathrm{~m} / \mathrm{sec}$.
Q. 15
(A)

Figure shows a rod of infinite length with point A at distance u and B at infinity.
By using mirror formula we find the image of point A \& B.
Point A
$u=-u f=-f$
$\frac{1}{v}-\frac{-1}{u}=\frac{-1}{f}$
$\frac{1}{v}=\frac{1}{u}-\frac{1}{f}$
$v=\frac{f-u}{u f} \frac{u f}{f-u}=\frac{-u f}{u-f}$
Point B
$u=-\infty f=-f$
$\frac{1}{v}-\frac{1}{\infty}=\frac{-1}{f}$
$\mathrm{v}=-\mathrm{f}$.
Distance $=\frac{u f}{u-f}-f=\frac{f^{2}}{u-f}$

Q. 16

(C)

So $u=-\left(b-\frac{a}{2}\right) \quad$ Using mirror formula
$\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{\frac{a}{2}} \frac{1}{\left(b-\frac{a}{2}\right)}$
by solving
$\frac{1}{v}=\frac{4 b}{a(2 b-a)} \Rightarrow v=\frac{a(2 b-a)}{4 b}$
so distance from focus $=\frac{a}{2}-v$
$\Rightarrow \frac{a}{2}-\mathrm{a} \frac{(2 b-a)}{4 b}=\frac{a^{2}}{4 b}$
(B)

Image is large and real.
Concave mirror such that object is closer than image.
Mirror should be placed towards left of I.

Q. 18 (C)

Given
$u=-15 \mathrm{~cm} \Rightarrow \mathrm{f}=-10 \mathrm{~cm} \Rightarrow \mathrm{v}=+30 \mathrm{~cm}$ (Using mirror formula)

Now $\frac{d v}{d u}=-\frac{v^{2}}{u^{2}}$
$d v=-\left(\frac{30}{15}\right)^{2} \cdot d u$
$\mathrm{dv}=-4 \times 2$
$\mathrm{dv}=-8 \mathrm{~mm}$.

Q. 19 (B)

For $\mathrm{II}^{\mathrm{nd}}$ reflection
Minimum value of $\theta=45^{\circ}$
Q. 20 (D)

Can be understood by the following ray diagrams :

Since, rays are almost perpendicular to P -axis Image will form at focus of size $=f \theta$.
Q. 21 (A)

For $\mathrm{m}=2$
$\mathrm{m}=-\frac{\mathrm{v}}{\mathrm{u}}=2$
$\mathrm{V}=-2 \mathrm{u}$
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u} \Rightarrow \frac{1}{f}=\frac{1}{-2 u}+\frac{1}{u}$
$\Rightarrow \frac{1}{f}=\frac{1}{2 u} \Rightarrow u=\frac{f}{2}$
\& $\quad v=-f$
Distance between object $\&$ image $=\mathrm{f}+\mathrm{f} / 2=3 \mathrm{f} / 2$
For $m=-2$
$\mathrm{m}=-\frac{\mathrm{v}}{\mathrm{u}}=-2$
$\mathrm{v}=2 \mathrm{u}$
$\Rightarrow \frac{1}{f}=\frac{1}{2 u}+\frac{1}{u} \Rightarrow u=\frac{3 f}{2} \& v=3 f$
Distance between object $\&$ image $=3 f-\frac{3 f}{2}$.
Q. 22 (C)

For $\mathrm{M}_{1} \mathrm{u}_{1}=-30 \mathrm{~cm}, \mathrm{f}_{1}=20 \mathrm{~cm}$
$\frac{1}{\mathrm{v}_{1}}+\frac{1}{\mathrm{u}_{1}}=\frac{1}{\mathrm{f}_{1}} \Rightarrow \frac{1}{\mathrm{v}_{1}}+\frac{1}{-30}=\frac{1}{-20}$
$\Rightarrow \frac{1}{v_{1}}=\frac{1}{30}-\frac{1}{20}=\frac{2-3}{60}=\frac{-1}{60}$
$\mathrm{v}_{1}=-60 \mathrm{~cm}$
For M_{2}
$u_{2}=+(60-(10+30))=+20 \mathrm{~cm}$
$\mathrm{f}_{2}=+10 \mathrm{~cm}$
$\frac{1}{v_{2}}+\frac{1}{20}=\frac{1}{10} \Rightarrow v_{2}=+20 \mathrm{~cm}$
Now for M_{1}
$\mathrm{m}_{1}=-\frac{\mathrm{v}_{1}}{\mathrm{u}_{1}}$
For M_{2}
$\mathrm{m}_{2}=-\frac{\mathrm{v}_{2}}{\mathrm{u}_{2}}$
Total $\mathrm{M}_{\mathrm{T}}=\mathrm{m}_{1} \times \mathrm{m}_{2}=\frac{\mathrm{v}_{1}}{\mathrm{u}_{1}} \times \frac{\mathrm{v}_{2}}{\mathrm{U}_{2}}$
$=\frac{(-60)(+20)}{(-30)(+20)}$

$$
\mathrm{M}_{\mathrm{T}}=+2
$$

(A)

I_{1} will behave as an object for M_{2}. Hence

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{-\mathrm{v}^{2}}{\mathrm{u}^{2}} \frac{\mathrm{du}}{\mathrm{dt}}
$$

Image will go towards right.
Q. 24 (A)

The ray in this case is not paraxial so ray after reflections does not pass from focus but from point $\frac{R}{2} \sec \theta$ from C.

$\sin \theta=\frac{f}{C P}=\frac{1}{2}$
$\Rightarrow \theta=30^{\circ}$
$[\because \mathrm{CP}=2 \mathrm{f}]$
$\mathrm{BC}=\mathrm{f} \sec \theta$
$\frac{B C}{f}=\frac{2}{\sqrt{3}}$
Q. 25 (B)

For M_{1}
$v=\frac{u f}{u-f}=\frac{-15 \times(-10)}{-15-(-10)}=-30 \mathrm{~cm}$
For $\mathrm{M}_{2} \quad \mathrm{u}=10 \mathrm{~cm}$
$\therefore \quad \mathrm{v}=\frac{10 \times(-10)}{10-(-10)}=-5 \mathrm{~cm}$
magnification $\mathrm{m}=\frac{-\mathrm{v}}{\mathrm{u}}=-\left(\frac{-5}{10}\right)=\frac{1}{2}$
so, distance of image from $\mathrm{CD}=\frac{1}{2} \times 3=\frac{3}{2} \mathrm{~cm}$
\therefore distance of image from $\mathrm{AB}=3-\frac{3}{2}=\frac{3}{2} \mathrm{~cm}$
(D)

As n varies ' y ', parallel slabs can be taken, and we know in parallel slabs
$n_{r} \sin i_{r}=$ constant. as $n_{1} \sin i_{1}=1 \times \sin 90^{\circ}=1$
= constant
$\mathrm{n}_{\text {final }}=\mathrm{n}_{\text {air }}=1$
$\Rightarrow \quad 1=1 \times \sin \mathrm{r}_{\text {final }} \Rightarrow \mathrm{r}_{\text {final }}=90^{\circ}$
$\therefore \quad$ Deviation is zero.
Q. 27
(A)

From Snell's Law
$\mu_{1} \sin \mathrm{i}=\mu_{2} \sin \mathrm{r}$
$\mu_{1} \frac{a}{\sqrt{a^{2}+b^{2}}}=\frac{\mu_{2} \alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$
Because $\vec{r}_{\mathrm{a}} \& \overrightarrow{\mathrm{r}}_{\mathrm{b}}$ are unit vector hence
$\sqrt{a^{2}+b^{2}}=1 \quad \& \quad \sqrt{\alpha^{2}+\beta^{2}}=1$
so $\mu_{1} a=\mu_{2} \alpha$
Q. 28 (C)
$2 \sin \mathrm{i}=\frac{\sqrt{5}}{2} \sin \mathrm{r}$
$\frac{2 \times 1}{\sqrt{5}}=\frac{\sqrt{5}}{2} \sin r$

$\sin \mathrm{r}=\frac{4}{5}=53^{\circ}$
Now check options.
Q. 29 (C)
$\mathrm{i}=60^{\circ}$
Displacement $=t \sec r \sin (i-r)=5 \sqrt{2}$
$=15 \sec r\left[\frac{\sqrt{3}}{2} \cos r-\frac{\sin r}{2}\right]=5 \sqrt{3}$
$\Rightarrow \frac{\sqrt{3}}{2}-\frac{\tan r}{2}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{r}=30^{\circ}$
Now $\mu \sin \mathrm{r}=\sin \mathrm{i}$
$\mu=\frac{\sqrt{3}}{2} \times \frac{1}{2}=\sqrt{3}$

Q. 30 (C)

Distance of I_{1} from refracting surface $=20 \mu$
Distance of I_{2} from reflecting surface
Distance of I_{1} from reflecting surface $=10+20 \mu$
Distance of I_{2} from refracting surface $=20+20 \mu$
Distance of I_{3} from refracting surface
$=\frac{20+20 \mu}{\mu}=10+23.2$
$=\frac{20}{\mu}+20=13.2$
$\mu=\frac{20}{13.2}=\frac{200}{132} \mathrm{~cm}$.
(C)

$$
\frac{\text { Apparent Depth }}{\text { Real Depth }}=\frac{\mu_{2}}{\mu_{1}}
$$

$\frac{(21 / 2)}{x}=\frac{1}{4 / 3}$
$\mathrm{x}=14 \mathrm{~cm}$
Q. 32 (B)
$\mathrm{d}_{1}=\frac{3 \mathrm{~h}}{4}$
Apparent depth of B
$d_{2}=n_{3}\left(\frac{t_{1}}{n_{1}}+\frac{t_{2}}{n_{2}}+\frac{t_{3}}{n_{3}}\right)$
$d_{2}=\frac{h-36}{4 / 3}+\frac{36}{1.5}$
$d_{2}-d_{1}=\frac{36}{1.5}-\frac{36}{4 / 3}$
$=3 \mathrm{~mm}$
Q. 33 (A)

$\mathrm{n}_{1} \sin \phi=1 \times \sin \theta$
$\Rightarrow \sin \phi=\frac{\sin \theta}{\mathrm{n}_{1}} \Rightarrow \cos \phi=\frac{\sqrt{\mathrm{n}_{1}^{2}-\sin ^{2} \theta}}{\mathrm{n}_{1}}$

For T.I.R. $90-\phi>\mathrm{C} \Rightarrow \cos \phi>\sin \mathrm{C}$
$\therefore \frac{\sqrt{n_{1}^{2}-\sin ^{2} \theta}}{\mathrm{n}_{1}}>\sin \mathrm{C}$
$\left\{\sin C=\frac{n_{2}}{n_{1}}\right\} \Rightarrow \frac{n_{1}^{2}-\sin ^{2} \theta}{n_{1}{ }^{2}}>\frac{n_{2}{ }^{2}}{n_{1}{ }^{2}}$
Q. 34 (B)

For TIR to take place $\theta>C$.

$\tan \theta=\frac{\mathrm{a}}{\mathrm{g}}=\frac{7.5}{10}=\frac{3}{4}$
$\sin \theta>\sin C$
$\frac{3}{5}>\mu \Rightarrow \phi>\mathrm{C}$
Q. 35 (C)

$\sin \mathrm{C}=\frac{1}{1.4}$
$\mathrm{C}=45.58$
For TIR to take place $\theta>C$.
(C)

For transmission
$\mathrm{r}_{2} \leq \sin ^{-1}(1 / \mu) \& \mathrm{r}_{1} \leq \sin ^{-1}(1 / \mu)$
$\mathrm{r}_{1}+\mathrm{r}_{2} \leq 2 \sin ^{-1}(1 / \mu) \quad \mathrm{A} \leq 2 \sin ^{-1}(1 / \mu)$
$\sin ^{-1}(1 / \mu) \geq 45^{\circ} \Rightarrow \frac{1}{\mu} \geq \frac{1}{\sqrt{2}} \Rightarrow \mu \leq \sqrt{2}$.
Q. 37 (B)

Deviation by prism.
$\delta_{1}=\mathrm{A}(\mu-1)=4^{\circ}(1.5-1) \Rightarrow \delta_{1}=2^{\circ}$
for plane mirror
$\mathrm{i}=2^{\circ}$
$\delta_{2}=180^{\circ}-2 \mathrm{i}=176^{\circ} \quad \Rightarrow \delta=\delta_{1}+\delta_{2}=178^{\circ}$

Using formula for relation between $\delta_{\text {min }} \& A$.

$$
\begin{aligned}
& \mu=\frac{\sin \left(\frac{A+\delta_{\text {min }}}{2}\right)}{\sin \frac{A}{2}} \\
& \sqrt{\frac{3}{2}}=\frac{\sin \left(\frac{90+\delta_{\text {min }}}{2}\right)}{\sin 45^{\circ}} \\
& \sin \left(\frac{90+\delta_{\text {min }}}{2}\right)=\frac{\sqrt{3}}{2} \\
& \frac{90+\delta_{\text {min }}}{2}=60^{\circ} \Rightarrow \delta_{\text {min }}=30^{\circ}
\end{aligned}
$$

Q. 40
 (A)

$$
\begin{aligned}
& \theta_{C}=60-\sin ^{-1}\left(\frac{\operatorname{sini} i_{\min }}{\mu}\right) \\
& \left(\sin ^{-1}\left(\frac{1}{\mu}\right)\right)=\left[60-\sin ^{-1}\left(\frac{\sin \mathrm{i}_{\min }}{\mu}\right)\right] \\
& \sin ^{-1}\left(\frac{\operatorname{sini}}{\mu}\right)=60-\sin ^{-1} \sqrt{\frac{3}{7}} \\
& \frac{\operatorname{sini}}{\mu}=\frac{\sqrt{3}}{2} \cos \left(\sin ^{-1} \sqrt{\frac{3}{7}}\right)-\frac{1}{2} \sqrt{\frac{3}{7}} \\
& \sin i=\sqrt{\frac{7}{3}}\left[\frac{\sqrt{3}}{2} \times \frac{2}{\sqrt{7}}-\frac{\sqrt{3}}{2 \sqrt{7}}\right] \\
& \sin i=\left[1-\frac{1}{2}\right] \Rightarrow i=30^{\circ}
\end{aligned}
$$

(B)

Deviation by prism $=\mathrm{A}(\mu-1)=4^{\circ}(1.5-1) 2^{\circ}$
For 90° total deviation, deviation by mirror
$=90^{\circ}-2^{\circ}=88^{\circ}$
$180^{\circ}-2 \mathrm{i}=88^{\circ}$
$2 \mathrm{i}=92^{\circ}$
$\mathrm{i}=46^{\circ}$
Mirror should be rotated 1° anticlockwise.
Q. 42
(A)
$90-\theta \geq \mathrm{c}$

$\cos \theta \geq \sin c$
$\cos \theta \geq \frac{6}{5} \times \frac{2}{3} \Rightarrow \theta \leq 37^{\circ}$.

Q. 43 (B)

From properties of prism
$\mathrm{r}+\mathrm{C}=\mathrm{A}$
$\mathrm{r}=\mathrm{A}-\mathrm{C}=75-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=30^{\circ}$

$$
\begin{aligned}
& 1 . \sin i=\sqrt{2} \sin r \\
& i=\sin ^{-1}\left(\sqrt{2} \times \frac{1}{2}\right) \\
& i=45^{\circ}
\end{aligned}
$$

Q. 44 (D)

$$
\begin{aligned}
& i=\frac{\pi}{2}, e=\frac{\pi}{4}, A=\frac{\pi}{4} \\
& \frac{\sin i}{\sin r_{1}}=\frac{\sin e}{\sin r_{2}}=\mu \\
& \Rightarrow \operatorname{sinr_{1}}=\frac{1}{\mu} \text { and } \operatorname{sinr_{2}}=\frac{1}{\sqrt{2} \mu}
\end{aligned}
$$

$$
\text { Since } r_{1}+r_{2}=A=\frac{\pi}{4} \Rightarrow r_{1}=\frac{\pi}{4}-r_{2}
$$

$$
\Rightarrow \quad \operatorname{sinr}_{1}=\frac{1}{\sqrt{2}} \operatorname{cosr}_{2}-\frac{1}{\sqrt{2}} \operatorname{sinr}_{2}
$$

$$
=\sqrt{2} \operatorname{sinr}_{1}+\operatorname{sinr}_{2}=\operatorname{cosr}_{2}
$$

$$
=\frac{\sqrt{2}}{\mu}+\frac{1}{\sqrt{2} \mu}=\sqrt{1-\frac{1}{2 \mu^{2}}}
$$

$$
=\frac{1}{\mu^{2}}\left(2+\frac{1}{2}+2\right)=1-\frac{1}{2 \mu^{2}}
$$

$$
=\frac{1}{\mu^{2}}\left(\frac{9}{2}+\frac{1}{2}\right)=1
$$

$$
\mu^{2}=5 \Rightarrow \mu=\sqrt{5}
$$

Q. 45
(A)

On second surface for grazing emergence
$\sqrt{2} \sin r_{2}=1 \sin 90^{\circ}$
$\mathrm{r}_{2}=45^{\circ}$
$\mathrm{A}=\mathrm{r}_{1}+\mathrm{r}_{2} \Rightarrow \mathrm{r}_{1}=15^{\circ}$
Now for Ist surface
$1 \sin i=\sqrt{2} \sin 15^{\circ}$
$i=\sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right)$
Q. 46
(B)

$\mathrm{r}_{2}=0, \mathrm{r}_{1}=\mathrm{A}$
$\sin 2 \mathrm{~A}=\mu \sin \mathrm{A}$
$\mu=\frac{2 \sin \mathrm{~A} \cos \mathrm{~A}}{\sin \mathrm{~A}}=2 \cos \mathrm{~A}$
Q. 47
(C)
$\delta=(1.5-1) \times 5^{\circ}=2.5 \times \frac{\pi}{180}$

Q. 48
(B)

Deviation by prism $=1.8^{\circ}\left(\frac{3}{2}-1\right)=0.9^{\circ}$

$\mathrm{R}=20 \mathrm{~cm}|\mathrm{f}|=10 \mathrm{~cm}$
Image will form on focal plane
Distance of image from P -axis $=|\mathrm{f}| \delta$
$=100 \times \frac{0.9 \pi}{180} \mathrm{~mm}=1.57 \mathrm{~mm}$
(D)

Using refraction formula at curved surface,

$$
\frac{3}{2 v}-\frac{1}{\infty}=\frac{\frac{3}{2}-1}{R} ; \frac{3}{2 V}=\frac{1}{2 R} ; V=3 R
$$

From figure $\frac{x}{2 R}=\frac{d}{3 R} \quad ; x=\frac{2}{3} d$.
(A)

$\mathrm{n}_{2}=\frac{4}{3}, \quad \mathrm{n}_{1}=\frac{3}{2}$
$\mathrm{R}=-10 \mathrm{~cm}$
$\mathrm{u}=-\mathrm{x}$
$\Rightarrow \frac{4}{3 v}+\frac{3}{2 x}=\frac{4 / 3-3 / 2}{-10}$
$\Rightarrow \frac{1}{v}=\frac{3}{4} \times\left(\frac{1}{60}-\frac{3}{2 x}\right)$
for real image $\mathrm{v}>0$
$\Rightarrow \frac{3}{4}\left(\frac{1}{60}-\frac{3}{2 x}\right)>0 \quad \Rightarrow \mathrm{x}>90 \mathrm{~cm}$
Q. 55

$$
\frac{1}{x}=\frac{1}{20} \Rightarrow x=20 \mathrm{~cm} .
$$

Here $\mathrm{n}_{2}=\frac{4}{3}$

$\mathrm{n}_{1}=1$
$\mathrm{u}=-\mathrm{R}$
R $=+\mathrm{R}$
from $\frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{R}$
$\Rightarrow \frac{4}{3 v}+\frac{1}{R}=\frac{(4 / 3-1)}{R} \Rightarrow \frac{4}{3 v}=\frac{1}{3 R}-\frac{1}{R}$
$\Rightarrow \mathrm{v}=-2 \mathrm{R}$
Then the distance from the centre

$$
=R+2 R=3 R
$$

(C)

Image is always virtual because rays goes from rarer to denser medium.
(A)
$\mathrm{u}=-\mathrm{x}$
$\mathrm{n}_{2}=1$
$\mathrm{n}_{1}=1.5$

$\Rightarrow \frac{1}{v}+\frac{3}{2 x}=\frac{1-1.5}{-R}$
for real image $\frac{1}{v}>0$
$\Rightarrow \frac{1}{2 R}-\frac{3}{2 x}>0 \Rightarrow x>3 R$
(A)

For refraction by upper surface

$$
\begin{aligned}
& \frac{1.6}{v_{1}}-\frac{1}{-2}=\frac{1.6-1}{1} \\
\Rightarrow & \frac{1.6}{v_{1}}=0.6-0.5=0.1 \\
\Rightarrow & v_{1}=16 \mathrm{~m}
\end{aligned}
$$

For refraction by lower surface

$$
\begin{aligned}
& \frac{2}{v_{2}}-\frac{1}{-2}=\frac{2-1}{1} \\
\Rightarrow & \frac{2}{v_{2}}=1-0.5=0.5 \\
\Rightarrow & v_{2}=\frac{2}{0.5}=4 \mathrm{~m}
\end{aligned}
$$

Distance between images $=(16-4)=12 \mathrm{~m}$.
Q. 57 (D)

$f_{1}=\frac{(+20)(-40)}{(20-40)} f_{2}=-40$
$=40$
$\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{x}{f_{1} f_{2}}$
$=\frac{1}{40}+\frac{1}{-40}-\frac{20}{40 \times(-40)}$
$\frac{1}{f}=\frac{1}{80}$
$\mathrm{f}=80 \mathrm{~cm}$.
(D)

$\mathrm{OB}=\mathrm{y}$ and $\mathrm{OA}=\mathrm{x}$
$\mathrm{y}^{2}+\mathrm{OC}^{2}=\mathrm{BC}^{2}$
$\mathrm{x}^{2}+\mathrm{OC}^{2}=\mathrm{CA}^{2}$
$\mathrm{BC}^{2}+\mathrm{CA}^{2}=(\mathrm{x}+\mathrm{y})^{2}$
(3) $-[(1)+(2)]$
$\Rightarrow \mathrm{xy}=\mathrm{OC}^{2}$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{1}{y}+\frac{1}{x}=\frac{1}{f}$
$f=\frac{x y}{x+y} \Rightarrow f=\frac{O C^{2}}{A B}$
Q. 59 (C)
I^{st} lens \Rightarrow diverging lens (concave)

$$
\Rightarrow \text { focus }=-5 \mathrm{~cm}
$$

$2^{\text {nd }}$ lens \Rightarrow converging lens (convex)

$$
\Rightarrow \text { focus }=+5 \mathrm{~cm}
$$

Q. 60 (C)

$\mathrm{C} \rightarrow$ A converging lens may be used and the object be placed at a distance less than f from the lens.
Q. 61 (D)

The object will now appear to be placed at O^{\prime} which is a point between $\mathrm{C} \& \infty$ for mirror. So image is formed between $\mathrm{C} \& \mathrm{O}$.

Q. 62 (C)
$\frac{1}{\mathrm{f}_{\ell}}=\mathrm{p}=(\mu-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$

Now $\mathrm{p}^{\prime}=\left(\frac{\mu}{\mu_{0}}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$
... (2)
$\frac{\mathrm{p}^{\prime}}{\mathrm{p}}=\frac{\mu-\mu_{0}}{\mu_{0}(\mu-1)}$
Q. 63
(D)

$\mathrm{u}=-30$
$\mathrm{f}=20 \mathrm{~cm}$
$\mathrm{h}_{0}=0.5 \mathrm{~cm}$
$\Rightarrow \quad \mathrm{v}=+60 \mathrm{~cm}$
$h_{i}=-1 \mathrm{~cm}$
Q. 64 (D)
$\frac{d v}{d t}=\frac{v^{2}}{u^{2}} \times \frac{d u}{d t}$
$\Rightarrow \mathrm{V}_{\mathrm{I} \ell}=\frac{\mathrm{v}^{2}}{\mathrm{u}^{2}} \cdot \mathrm{v}_{0 \ell} \Rightarrow\left(\mathrm{~V}_{\mathrm{I}}-\mathrm{V}_{\ell}\right)=\frac{\mathrm{v}^{2}}{\mathrm{u}^{2}}\left(\mathrm{v}_{0}-\mathrm{v}_{\ell}\right)$
$\Rightarrow \mathrm{V}_{\mathrm{I}}=\frac{-\mathrm{v}^{2}}{\mathrm{u}^{2}} \cdot \mathrm{v}_{\ell}+\mathrm{v}_{\ell}$
$\Rightarrow V_{I}=V_{\ell}\left[\frac{u^{2}-v^{2}}{u^{2}}\right]=v \times\left[\frac{u^{2}-v^{2}}{u^{2}}\right]$
upto $2 \mathrm{fu}<\mathrm{v}$ Hence $\mathrm{v}_{\mathrm{I}}=-\mathrm{ve}$ after $2 \mathrm{fu}>\mathrm{v}$ Hence $\mathrm{v}_{\mathrm{I}}=+\mathrm{ve}$
Q. 65
(A)

There are 3 lenses touching each other and $\mathrm{f}_{1}=\mathrm{f}_{3}=$ 10 cm . Let radius $=\mathrm{R}$
then $\frac{1}{f_{1}}=\left(\frac{3}{2}-1\right)\left(\frac{1}{\mathrm{R}}+0\right)=\frac{1}{10}$
$\mathrm{R}=5 \mathrm{~cm}$
So, $\frac{1}{f_{2}}=\left(\frac{4}{3}-1\right)\left(\frac{-1}{R}-\frac{1}{R}\right)=\frac{-1}{3} \times \frac{2}{R}$
$\frac{1}{f_{2}}=\frac{-2}{15}$
$\mathrm{P}_{\mathrm{eq}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
So $P_{e q}=\left(\frac{1}{f_{1}}+\frac{1}{f_{3}}+\frac{1}{f_{2}}\right) \times 100$ (diaptor)
$=\left(\frac{2}{10}-\frac{2}{15}\right) \times 100=\frac{1000}{150}$
Power $=6.67$ diaptor

Q. 66 (C)

$\mathrm{m}=3=\frac{\mathrm{v}}{\mathrm{u}} \Rightarrow \mathrm{v}=3 \mathrm{u}$
$\mathrm{u}=-10 \mathrm{~cm} \Rightarrow \mathrm{v}=+30 \mathrm{~cm}$
$\frac{1}{30}+\frac{1}{10}=\frac{1}{f_{e q}}$
$\mathrm{f}_{\mathrm{eq}}=\frac{30}{4} \mathrm{~cm} \mathrm{f}_{2}=-30$
$\frac{1}{f_{e q}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{f_{1}}-\frac{1}{30}=\frac{4}{30}$
$\mathrm{f}_{1}=6 \mathrm{~cm}$
Q. 67
(A)

convex lens horizontal
$\frac{1}{f_{e q}}=\frac{1}{f_{m}}-2\left[\frac{1}{f_{1}}+\frac{1}{f_{2}}\right]$
$\mathrm{f}_{\mathrm{m}}=-10 \mathrm{~cm}$
$\frac{1}{f_{1}}=\left(\frac{4}{3}-1\right)\left[\frac{1}{\infty}-\left(\frac{-1}{60}\right)\right]=\frac{1}{180}$
$\frac{1}{f_{2}}=\left(\frac{3}{2}-1\right)\left[\frac{-1}{60}-\left(\frac{1}{-20}\right)\right]=\frac{1}{60}$
$\frac{1}{f_{e q}}=\frac{-1}{10}-2\left[\frac{3}{180}+\frac{1}{180}\right]=\frac{-26}{180}=\frac{1}{f_{m}}$
$\Rightarrow \mathrm{f}_{\text {eq }}=\frac{90}{13} \mathrm{~cm}$.
Q. 68
(B)

Ray retraces its path when it appears to come towards centre of curvature
$\mathrm{R}=20$
$\mathrm{F}=10 \mathrm{~cm}$
For ray to retrace its path it must fall normally on mirror.
Q. 69
(B)

$\mathrm{u}=-\mathrm{x}, \mathrm{f}=30 \mathrm{~cm}, \mathrm{v}=+\infty$
$\frac{1}{\infty}+\frac{1}{x}=\frac{1}{30} \Rightarrow x=30$

Q. 70

(A)

For auto collimation the image should be formed on object so the object should be placed at centre of curvature of the equivent mirror.
$\frac{1}{f_{\text {eq }}}=\frac{1}{f_{\mathrm{m}}}-\frac{2}{\mathrm{f}_{\ell}}$
$P_{m}=-\frac{1}{f_{m}}=\frac{-1}{20}-2(\mu-1)\left(\frac{2}{R}\right) \Rightarrow \frac{1}{f_{\text {eq }}}=\frac{-1}{10}$
(Equivalent system is concave mirror with focal length $10 \mathrm{~cm} \mathrm{R}=20 \mathrm{~cm}$ and hence $\mathrm{u}=20 \mathrm{~cm}$) $\mathrm{u}=20 \mathrm{~cm}$
Q. 71 (B)

$$
\begin{aligned}
& f=\frac{D^{2}-d^{2}}{4 D} \\
& \Rightarrow \mathrm{f}=\frac{90^{2}-20^{2}}{4 \times 40} \\
& \Rightarrow \mathrm{f}=21.4 \mathrm{~cm}
\end{aligned}
$$

Q. 72 (A)
$h_{0}=\sqrt{I_{1} I_{2}}$
$\mathrm{h}_{0}=\sqrt{6 \times 3}=4.2 \mathrm{~cm}$
Q. 73 (A)
$\delta=\delta_{1}-\delta_{2}=0$
$\left(\mu_{1}-1\right) \mathrm{A}_{1}-\left(\mu_{2}-1\right) \mathrm{A}_{2}=0$
$(1.54-1) \mu-(1.72-1) \mathrm{A}_{2}=0$
$\Rightarrow A_{2}=3^{\circ}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A, C, D)

(A) No, when object is between infinite and focus ,image is real.
(C) when object is between pole and focus, image is magnified.
(D) when object is between pole and focus image formed by convex mirror is real.
Q. 2 (B, D)

Here, $\mathrm{sp}=\mathrm{PA}$ and $\mathrm{SQ}=\mathrm{QB}$
so, position of A and B doesn't depend on separation of mirror from the wall so, the patch AB will not move on the wall.

$$
\begin{array}{ll}
\therefore \quad & \text { SA and } \mathrm{SB} \text { are constant } \\
\text { So, } \mathrm{AB}=\text { constant } .
\end{array}
$$

Q. 3 (A, D)

The image will look like white donkey because a small part of lines can form complete image. The image will be less intense because some light will stopped by streakes.
Q. 4 (A, D)

$\frac{\pi}{2}-i+\frac{\pi}{2}-r+\theta=\pi$
$i+r=\theta$
$\delta=2 i+2 r$
$\delta=2 \theta$
(Anticlockwise)
(B, C)
Let $A B$ be the man with his eye level at E and $A^{\prime} B$ ' be the image

Using similar $\Delta \mathrm{EHG} \& \Delta E E^{\prime} \mathrm{B}^{\prime}$
$\frac{E E^{\prime}}{E^{\prime} B^{\prime}}=\frac{E H}{H G}$
$\mathrm{EE}^{\prime}=2 \mathrm{EH} \& \mathrm{E}^{\prime} \mathrm{B}^{\prime}=160 \mathrm{~cm}$
$\mathrm{HG}=80 \mathrm{~cm}$
$\mathrm{FH}=5 \mathrm{~cm}$
Hence length of mirror required is $\mathrm{FG}=85 \mathrm{~cm}$ and bottom of mirror should be 80 cm or less above the ground or else feet will not be visible.
Q. 6
(B, D)
Field of view is same for all positions of the mirror and hence spot on wall remains unaffected

Q. 7 (B, C)

We have $v=\frac{u f}{u-f}=\frac{(-10)(10)}{-10-10}=+5$

$\therefore \quad v_{i x}=-\frac{v^{2}}{u^{2}} v_{o x}$
$=-\left(\frac{5}{-10}\right)^{2} \times 20 \cdot \frac{\sqrt{3}}{2}=-\frac{5 \sqrt{3}}{2} \mathrm{~mm} / \mathrm{sec}$ and $\quad v_{i y}=-\left(\frac{v}{u}\right) v_{\text {oy }}=-\left(\frac{5}{-10}\right) \times 20 \times \frac{1}{2}=5 \mathrm{~mm} /$ s.

Hence $\tan \theta=\left|\frac{\mathrm{v}_{\mathrm{iy}}}{\mathrm{u}_{\mathrm{ix}}}\right|=\frac{5}{5 \sqrt{3} / 2}=\frac{2}{\sqrt{3}}$
and $\quad v_{i}=\sqrt{\left(\frac{5 \sqrt{3}}{2}\right)^{2}+(5)^{2}}=\frac{5 \sqrt{7}}{2} \mathrm{~mm} / \mathrm{s}$

Q. 8 (B, C)

for $A^{\prime} u=-60$
$f=60 \quad v=+30$
for $B^{\prime} u=-90$
$\mathrm{f}=60 \quad \mathrm{v}=+36 \mathrm{~cm}$
Image length $=6 \mathrm{~cm}$
\therefore Magnification $=\frac{1}{5}$
Q. 9
(B, D)
Ray becomes vertical means angle of incidence $=$ $45^{\circ} . \therefore \theta$ with x -axis $=45^{\circ}$ Slope $= \pm 1$

$\frac{\mathrm{dy}}{\mathrm{dx}}=2 \cos \frac{\pi \mathrm{x}}{\mathrm{L}}= \pm 1$
$\Rightarrow 2 \cos \frac{\pi \mathrm{X}}{\mathrm{L}}= \pm 1 \Rightarrow \cos \frac{\pi \mathrm{X}}{\mathrm{L}}=\frac{1}{2}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{L}}{3} \therefore \mathrm{y}=\frac{\sqrt{3} \mathrm{~L}}{\pi}$
$\cos \frac{\pi x}{L}=-1 \quad \Rightarrow x=\frac{2 L}{3} \therefore y=\frac{\sqrt{3} L}{\pi}$
Q. 10 (A, B, D)

Refer to Q.no. F-4. Ex.1, Part-I
$f=\frac{n_{1} R}{2 n_{2}-n_{1}-n_{3}}$ or $\frac{n_{3} R}{2 n_{2}-n_{1}-n_{3}}$
If $\quad \mathrm{n}_{2}<\frac{\mathrm{n}_{1}+\mathrm{n}_{3}}{2} \Rightarrow \mathrm{f}$ is $-\mathrm{ve} \Rightarrow$ lens is diverging
If $\quad \mathrm{n}_{2}>\frac{\mathrm{n}_{1}+\mathrm{n}_{3}}{2} \Rightarrow \mathrm{f}$ is $+\mathrm{ve} \Rightarrow$ lens is converging.

If $\mathrm{n}_{2}=\mathrm{n}_{1}+\mathrm{n}_{2} \Rightarrow \mathrm{f}=\infty$ neither converging nor diverging.
Q. 11 (B,C,D)

$$
\begin{aligned}
& \mu_{1}=\sin r=\mu_{2} \sin i \\
& r=\sin ^{-1}\left(\frac{\mu_{2}}{\mu_{1}} \sin i\right)
\end{aligned}
$$

for zero deviation $\mu_{2}=\mu_{1}$
i.e., $\mathrm{k}_{2}=1$

If $\mu_{2}>\mu_{1}$ condition for C .
$\mu_{2} \cdot \sin \frac{\pi}{3}=\mu_{1} \sin 90^{\circ}$
$\Rightarrow \frac{\mu_{2}}{\mu_{1}}=\frac{\sqrt{3}}{2}=\mathrm{k}_{1}$

If $\mathrm{k} \rightarrow \infty \mathrm{r} \rightarrow 0$
$\therefore|r-i| \rightarrow \frac{\pi}{3}$

Q. 12

(B,C,D)
For critical angle
$\sin \mathrm{C}=\frac{\mu_{2}}{\mu_{1}}$
$90^{\circ}-C>\sin ^{-1} \frac{\mu_{3}}{\mu_{1}}$

$\cos \mathrm{C}>\frac{\mu_{3}}{\mu_{1}}$
$\sqrt{\mu_{1}^{2}-\mu_{1}^{2}}>\mu_{3}$
$\mu_{1}^{2}-\mu_{1}^{2}>\mu_{3}^{2}$
$\mu_{1}^{2}-\mu_{3}^{2}>\mu_{2}^{2}$
$\Rightarrow \mu_{1}^{2}+\mu_{2}^{2}>\mu_{3}^{2}$
Q. 13 (B, D)

$$
\frac{C_{y}}{C_{x}}=\frac{\sin r}{\operatorname{sini}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}
$$

$C_{y}=\frac{1}{\sqrt{3}} C_{x}$.
since y is denser, total internal reflection can take place when ray is incident from y .

Q. 14 (A,D)

$\delta=\mathrm{i}+\mathrm{e}-\mathrm{A}$
We know that if i and e are interchanged deviation remains same.

$$
\begin{aligned}
& \delta=\mathrm{i}+(\mathrm{i}+20)-60 \Rightarrow 40=2 \mathrm{i}-40 \\
& \mathrm{i}=40^{\circ}\left(\mathrm{e}=60^{\circ}\right)
\end{aligned}
$$

or similarly $\mathrm{i}=60 \quad(\mathrm{e}=40)$

Q. 15 (B, C, D)

A \rightarrow for min deviation there are two angles of incidence
$\mathrm{B} \rightarrow \mathrm{i}=\mathrm{e} \quad$ so $\quad \mathrm{r}_{1}=\mathrm{r}_{2}$
$\mathrm{C} \rightarrow \mathrm{i}=90^{\circ}$ or $\mathrm{e}=90^{\circ}$ for $\delta_{\text {max }}$
$\mathrm{D} \rightarrow \delta_{\text {min }}=(\mu-1) \mathrm{A}$
Q. 16 (A, B)

For $\mathrm{d}_{1}=120 \mathrm{~m} \frac{3 / 2}{\mathrm{v}}-\frac{1}{(-120)}=\frac{3 / 2-1}{60}$
$\Rightarrow \quad \mathrm{v}=\infty$
so, the ray is incident normally on the mirror. so for any value of d_{2}, ray retraces its path. so I_{f} is at O. for d_{1}
$\mathrm{I}_{\mathrm{f}}, \mathrm{O}_{1}=240 \mathrm{~cm} \frac{3 / 2}{\mathrm{~V}}-\frac{1}{(-240)}=\frac{3 / 2-1}{60}$
$\Rightarrow \mathrm{v}=360 \mathrm{~cm}$.
If first image is formed at mirror ray retraced its path to form image at O .
Q. 17 (A, C)

$\mathrm{u}=-\mathrm{x}, \mathrm{n}_{2}=\mu_{2}, \mathrm{n}_{1}=\mu_{1}, \mathrm{R}=-\mathrm{R}$
$\Rightarrow \frac{\mu_{2}}{v}+\frac{\mu_{1}}{x}=\frac{\mu_{2}-\mu_{1}}{-R}$
$\Rightarrow \frac{\mu_{2}}{\mathrm{~V}}=\frac{-\mu_{1}}{\mathrm{X}}-\frac{\mu_{2}-\mu_{1}}{\mathrm{R}}$
If $\mu_{2}>\mu_{1} \Rightarrow \mathrm{v}=-\mathrm{ve}$
If x is -ve and $\mu_{1}>\mu_{2} \Rightarrow \mathrm{v}=+\mathrm{ve}$

Q. 18 (A, B, C)

Power, focal length and chromatic aberration of a lens depend on refractive index of the material of lens which, in turn, depends on wavelength of the incident light.

Clearly, final rays are parallel to principal axis for any value of d_{1} and $\mathrm{d}_{2}=(20-5)=15 \mathrm{~cm}$.
(B, C)
$\frac{1}{f}=\frac{1}{v}-\frac{1}{4} \quad \frac{1}{+30}=\frac{1}{v}-\frac{1}{-15}$
$\frac{1}{v}=\frac{1}{30}-\frac{1}{15}=-\frac{1}{30} \quad v=-30$

For plane mirror $u=-30-15=-45 \mathrm{~cm}$ $\Rightarrow \mathrm{v}=+45 \mathrm{~cm}$
For second refraction
$u=-60, f=30 \mathrm{~cm}$
$\frac{1}{30}=\frac{1}{v}-\frac{1}{-60} \frac{1}{v}=\frac{1}{30}-\frac{1}{60}=-\frac{1}{60} \quad v=-60 \mathrm{~cm}$ final image is real and 60 cm left from lens.

Q. 21

A \rightarrow The image will look like a white donkey on the photograph
$\mathrm{D} \rightarrow$ The image will be less intense compared to the case in which no such glass is used.
Q. $22(\mathrm{~A}, \mathrm{C})$

$\frac{1}{f_{1}}=\left(\frac{3}{2}-1\right)\left(-\frac{1}{10}-\frac{1}{15}\right) \Rightarrow \frac{1}{f_{1}}=-\frac{1}{12}$
$\frac{1}{f_{2}}=\left(\frac{4}{3}-1\right)\left(\frac{1}{15}+\frac{1}{15}\right)=\frac{2}{45}$
$\frac{1}{f_{m}}=-\frac{1}{15 / 2}=\frac{-2}{15}$
$\frac{1}{f_{e q}}=-\frac{2}{15}-2\left[-\frac{1}{12}+\frac{2}{4.5}\right]=\frac{-5}{90}$
$\mathrm{f}_{\text {eq }}=-18 \mathrm{~cm}$
(A, C)

On cutting lens into two halves power of each section becomes $\mathrm{P} / 2$ on combining them again net power of system becomes P so focal length of two system (ii) and (iii) is same.
Q. 24 (B, C, D)

$\mathrm{D}=90 \mathrm{~cm}$
$h_{0}=h_{0}=\sqrt{h_{1} h_{2}}=6 \mathrm{~cm}$
$\frac{\mathrm{h}_{1}}{\mathrm{~h}_{0}}=\frac{\mathrm{v}}{\mathrm{u}}=\frac{9}{6}=\frac{3}{2}$
$\mathrm{v}: \mathrm{u}=3: 2$
$u v+u=90$
$\Rightarrow \mathrm{v}=54, \mathrm{u}=36 \Rightarrow \mathrm{~d}=18$
$f=\frac{D^{2}-d^{2}}{4 D}$
$\mathrm{f}=\frac{90^{2}-18^{2}}{4 \times 90} \Rightarrow \mathrm{f}=21.6 \mathrm{~cm}$
Q. 25 (B, C)

The light splits in different colours inside the slab due to dispersion.
But the emergent rays will be parallel and will overlap with others hence giving white emergent beam.
Inside the slab rays of different colours are not parallel and they intersect each other.

Q. 26 (A, B, C)

Obvious from theory
Q. 27 (D)

From passage, (D) is correct.
Q. 28 (C)

From passage, (C) is correct.
Q. 29 (D)

From points (2) and (3) of passage :
f and f^{\prime} must be of opposite sign.
Also $\omega_{\mathrm{C}}<\omega_{\mathrm{D}}$ and $f_{\mathrm{C}}<f_{\mathrm{D}}$ which is satisfied only by (D).
Q. 30 (B)

$$
\begin{align*}
& \frac{\omega_{1}}{f_{1}}+\frac{\omega_{2}}{f_{2}}=0 \\
& \Rightarrow \quad \frac{\omega_{1}}{\omega_{2}}=-\frac{f_{1}}{f_{2}}=\frac{1}{2} . \tag{1}\\
& \Rightarrow \quad \frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{40} . \tag{2}
\end{align*}
$$

After solving (1) \& (2)
$\mathrm{f}_{1}=20 \mathrm{~cm}$
$\mathrm{f}_{2}=-40 \mathrm{~cm}$.
Q. 31 (D)

Chromatic aberration doesn't occur in case of spherical mirrors.
Q. 32 (D)
$\frac{1}{f}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}$
Here $v=2.5$ (Distance of Retina as position of image is fixed)

$$
\mathrm{u}=-\mathrm{x}
$$

$\frac{1}{f}=\frac{1}{2.5}+\frac{1}{\mathrm{x}}$ For $\mathrm{f}_{\text {min }}$:
x is minimum $\frac{1}{f_{\text {min }}}=\frac{1}{2.5}+\frac{1}{25}$
Q. 33 (B)

For $\mathrm{f}_{\max }: \mathrm{x}$ is maximum $\frac{1}{f_{\max }}=\frac{1}{2.5}+\frac{1}{\infty}$

Q. 34 (B)

For near sighted man lens should make the image of the object with in 100 cm range
For lens $\mathrm{u}=-\infty \mathrm{v}=-100$

$$
\frac{1}{f_{\text {lens }}}=\frac{1}{-100}-\frac{1}{-\infty}
$$

Q. 35 (C)

For far sighted man lens should make image of the nearby object at distance beyond 100 cm
For grown up person least distance is 25 cm for lens $u=-25, v=-100$
$\frac{1}{f}=\frac{1}{-100}-\frac{1}{(-25)} \Rightarrow \frac{1}{f}=\frac{3}{100}$
$\mathrm{P}=+3$
so no. of spectacle is $=+3$.
Q. 36 (C)

$$
\frac{\mu_{2}}{\mathrm{v}}-\frac{\mu_{2}}{\mathrm{u}}=\frac{\mu_{2}-\mu_{1}}{\mathrm{R}} \Rightarrow \frac{\mu}{2 \mathrm{R}}-\frac{1}{-2 \mathrm{R}}=\frac{\mu-1}{2 \mathrm{R}}
$$

Q. 37 (B)

$$
\begin{aligned}
& \frac{\mu_{2}}{\mathrm{v}}-\frac{\mu_{2}}{\mathrm{u}}=\frac{\mu_{2}-\mu_{1}}{\mathrm{R}} \Rightarrow \frac{\mu}{2 \mathrm{R}}-\frac{1}{\infty}=\frac{\mu-1}{\mathrm{R}} \\
& \Rightarrow \frac{\mu}{2}=\mu-1
\end{aligned}
$$

Q. 38 (B)

From the symmetry of the figure ray inside the sphere is parallel to principal axis.

Taking refraction at A .

$$
\frac{\mu}{\infty}-\frac{1}{-R}=\frac{\mu-1}{R}
$$

Q. 39 (A)

When we squeeze the lens f will decrease so turnip will move toward $2 f(R)$ from f so image will move towards lens (from $\infty \rightarrow 2 \mathrm{f}$)
Q. 40 (B)

Since image of object is moving towards R so lateral magnitude will decrease therefore lateral height will decrease.
(A)

As turnips moves aways image will also move towards lens. So to form image on card again focal lenght of lens to be decrease. Therefore squeeze of lens to be decrease.
(A)
(C)
Q. 44 (C)
(42) and (44)

$$
\begin{aligned}
& \mu=\frac{\sin \left(\frac{A+\delta_{m}}{2}\right)}{\sin \frac{A}{2}} \Rightarrow \sqrt{2}=\frac{\sin \left(\frac{60^{\circ}+\delta_{m}}{2}\right)}{\sin 30^{\circ}} \\
& \Rightarrow \frac{60^{\circ}+\delta_{m}}{2}=45^{\circ}
\end{aligned}
$$

$\therefore \quad \delta_{\min }=30^{\circ}$ Also i $+\mathrm{e}=\mathrm{A}+\delta$.
for $\delta=\delta_{\min } 2 \mathrm{i}=60^{\circ}+30^{\circ} \Rightarrow \mathrm{i}=45^{\circ}$
(c) for $\delta=\delta_{\max }$
$e=90^{\circ} \Rightarrow r_{2}=\sin ^{-1}\left(\frac{1}{\mu}\right)$

$$
\begin{aligned}
& \Rightarrow \quad r_{2}=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ} \Rightarrow r_{1}=A-r_{2}=15^{\circ} \\
& \frac{\sin \mathrm{i}}{\sin 15^{\circ}}=\mu=\sqrt{2} \\
& \sin \mathrm{i}=\sqrt{2} \sin 15^{\circ} \\
& \mathrm{i}=\sin ^{-1}\left(\sqrt{2} \sin 15^{\circ}\right) \\
& \delta_{\max }=\mathrm{i}+\mathrm{e}-\mathrm{A}=30^{\circ}+\sin ^{-1}\left(\sqrt{2} \sin 15^{\circ}\right)
\end{aligned}
$$

Q. 45
(A) p (B) p (C) q (D) q
(A) For converging lens (convex lens)
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$u=-x, v=y, f=d(+$ ve constant $)$

$\frac{1}{v}+\frac{1}{x}=\frac{1}{d}$
$\frac{1}{y}=\frac{1}{d}-\frac{1}{x}$
at $x=0$

$$
y=0
$$

For $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{d}, \mathrm{y}=-\mathrm{ve}$
so, if $x \uparrow y \downarrow$ and $|y| \uparrow$
At $\mathrm{x}=\mathrm{d}, \mathrm{y}=\infty$
when $x>d, y+v e$, and
at $\mathrm{x}=\infty, \mathrm{y}=\mathrm{d}$
taking magnitude of y, distance graph is shown.
(B) For converging mirror (concave mirror) $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$u=-x, f=-\frac{R}{2}, v=y$
$\frac{1}{y}-\frac{1}{x}=-\frac{2}{R}$
$\frac{1}{y}=\frac{1}{x}-\frac{2}{R}$
At $x=0, y=0$
for $0<x<\frac{R}{2}, y=+$ ve
and as x increases $\frac{1}{\mathrm{y}}$ decrease so $\mathrm{y} \uparrow$ upto $\mathrm{x}=\frac{\mathrm{R}}{2}$

At $x=\frac{R}{2}, y=\infty$

$x=\frac{R}{2} \quad y=\infty$
So, graph is (1)
when $x>\frac{R}{2} y(-v e)$
and as $\mathrm{x} \uparrow, 1 / \mathrm{y} \downarrow, \mathrm{y} \uparrow$ so, $|\mathrm{y}| \downarrow$
At $x=\infty, y=-\frac{R}{2}$
graph breaks so graph is (1)
(C) For diverging Lens (concave lens)
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$u=-x, f=-d v=y$
$\frac{1}{y}+\frac{1}{x}=-\frac{1}{d}$
$\frac{1}{y}=-\frac{1}{x}-\frac{1}{d}$
$\Rightarrow \quad y$ is always -ve
At $x=0, y=0$

As $\mathrm{x} \uparrow, \mathrm{y} \downarrow$ so, $|\mathrm{y}| \uparrow$
At $x=d, y=\frac{-d}{2}$
or $\mathrm{x}=\infty, \mathrm{y}=-\mathrm{d}$
graph is (2)
(D) For diverging Mirror (convex mirror)
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$u=-x, f=+\frac{R}{2}, v=y$
$\frac{1}{y}-\frac{1}{x}=\frac{2}{R} \Rightarrow \frac{1}{y}=\frac{1}{x}+\frac{2}{R} \Rightarrow y=+v e$
At $\mathrm{x}=0, \mathrm{y}=0$
$\frac{d y}{d x}=\frac{y^{2}}{x^{2}}$

$\mathrm{x} \uparrow, \mathrm{y} \uparrow$
At $x=\frac{R}{2}, y=\frac{R}{4}$,
At $x=\infty, y=\frac{R}{2}$
taking magnitude of y distance graph is graph is (2)
Q. 46 (i) B,D;(ii)A,B,C,D;(iii) A,B,D; (iv) D

Convex mirror always forms virtual image of real object.

NUMERICAL VALUE BASED

Q. $1 \quad[12 \mathrm{~mm}]$

Normal shift $=\mathrm{h}\left(1-\frac{1}{\mathrm{n}}\right)$

$$
\mathrm{A}^{\prime}=\mathrm{A}\left[1+\frac{\mathrm{h}}{\mathrm{~F}-\mathrm{y}}\left(1-\frac{1}{\mathrm{n}}\right)\right]
$$

$$
F-y=\frac{A F}{d}
$$

$$
\mathrm{A}^{\prime}=\mathrm{A}\left[1+\frac{\mathrm{dh}}{\mathrm{AF}}\left(1-\frac{1}{\mathrm{n}}\right)\right]
$$

$$
=1\left[1+\frac{2 \times 3}{1 \times 10}\left(1-\frac{1}{1.5}\right)\right]=1.2 \mathrm{~cm}=12 \mathrm{~mm} .
$$

Q. 2 [60]

Beam is parallel to base $\Rightarrow \mathrm{mm}$ deviation
$\mu=\frac{\sin \left(\frac{\delta+\gamma}{2}\right)}{\sin \left(\frac{\delta}{2}\right)} \Rightarrow \sqrt{3}=\frac{\sin \left(\frac{60+\gamma}{2}\right)}{\sin \left(\frac{60}{2}\right)}$
$\sin \left(\frac{60+\gamma}{2}\right)=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{60+\gamma}{2}=60$
$\gamma=60^{\circ}$
Q. 3 [6]
$u=-(30-2 t)$

$\mathrm{v}=20-2 \mathrm{t}$
$\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{~F}}$
$\frac{1}{20-2 \mathrm{t}}+\frac{1}{30-2 \mathrm{t}}=\frac{1}{5}$
$\frac{50-4 \mathrm{t}}{600+4 \mathrm{t}^{2}-100 \mathrm{t}}=\frac{1}{5}$
$250-20=600+4 \mathrm{t}^{2}-100 \mathrm{t}$
$4 \mathrm{t}^{2}-80 \mathrm{t}+350=0$
$\mathrm{t}=\frac{40 \pm \sqrt{1600-1400}}{4}=\frac{40-14}{4}=6.465 \mathrm{sec}$.
Q. 4 [10]

Refraction plane surface
$\mathrm{h}^{\prime}=\mathrm{h} \frac{\mu_{\mathrm{r}}}{\mu_{\mathrm{i}}}=\frac{20 \times 3 / 2}{1}=30 \mathrm{~cm}$
Mirror
$\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$
$\frac{1}{v}+\frac{1}{-45}=\frac{1}{-10}$
$v=-\frac{90}{7}$ from pole of mirror.
distance of object from plane surface
$l=15-\frac{90}{7}=\frac{105-90}{7}=\frac{15}{7}$
Refraction at plane surface
$\mathrm{x}=10 l^{\prime}=l \frac{\mu_{\mathrm{r}}}{\mu_{\mathrm{i}}}$
$\mathrm{x}=l^{\prime}=\frac{15}{7} \times \frac{1}{3 / 2}=\frac{10}{7} \Rightarrow 7 \mathrm{x}=10$
(location of final image from plane surface)
Q. 5 [24 cm]
(I) Image by partial reflection $=12 \mathrm{~cm}$ below water surface
(II) For mirror object appears at

$$
\frac{u}{4 / 3}=\frac{24}{4 / 3}+\frac{12}{1}
$$

$\mathrm{u}=24+12 \times \frac{4}{3} \Rightarrow \quad \mathrm{u}=40 \mathrm{~cm}$
Reflection
$\frac{1}{v}+\frac{1}{-40}=\frac{1}{+60} \quad \Rightarrow \quad \frac{1}{v}=\frac{1}{60}+\frac{1}{40}$
$\Rightarrow \quad \mathrm{v}=+24 \mathrm{~cm}$
Refraction

$$
\frac{\mathrm{AI}}{1}=\frac{48}{4 / 3}=36 \mathrm{~cm}
$$

Thus, distance between two images $=36-12=24$ cm
Q. 6 [21]
$\frac{4}{3 v}-\frac{1}{-30}=\frac{\frac{4}{3}-1}{5}$

$\frac{4}{3 v}=\frac{1}{15}-\frac{1}{30}=\frac{1}{30}$
$\mathrm{v}=40^{\prime \prime} \quad \Rightarrow \quad \mathrm{u}=35^{\prime \prime}$
$\frac{1}{v}-\frac{4 / 3}{+30}=\frac{1-4 / 3}{-5}$
$\frac{1}{v}-\frac{6}{90}+\frac{4}{90}$
$\mathrm{v}=9{ }^{\prime \prime}$
distance from observer $=21^{\prime \prime}$
Q. 7
[32]

$\hat{\mathrm{n}}=\frac{2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{3}$
$\hat{\mathrm{e}}=-\hat{\mathrm{i}}$
Using, $\hat{\mathrm{r}}=\hat{\mathrm{e}}-2(\hat{\mathrm{e}} \cdot \hat{\mathrm{n}}) \hat{\mathrm{n}}$
$\hat{\mathrm{r}}=-\hat{\mathrm{i}}-\frac{2(-2)}{3} \frac{(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})}{3}$
$=-\hat{\mathrm{i}}+\frac{4}{9}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})=\frac{-\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}}{9}$
Q. 8
[10]
$\frac{2 \mathrm{mg}}{\mathrm{k}}=5 \times 10^{-2}$
$\frac{1}{v}=\frac{1}{f}-\frac{1}{u}$
$\frac{1}{v}=\frac{1}{-10}-\frac{1}{-20}=\frac{-2+1}{20}$
$\mathrm{v}=-20 \mathrm{~cm}$
$\mathrm{d}_{1}=20 \mathrm{~cm}$ (initial distance of image from mirror)
$\frac{1}{v}=\frac{1}{-10}-\frac{1}{-15}=\frac{-3+2}{30}$
$\mathrm{v}=-30 \mathrm{~cm}$
$\mathrm{d}_{2}=30 \mathrm{~cm}$ (final distance of image from mirror)
$\mathrm{d}_{2}-\mathrm{d}_{1}=10 \mathrm{~cm}$ (distance in which the image oscillates)
Q. 9
[8.00]

$\mathrm{v}_{0}=-4 \mathrm{~m} / \mathrm{s} \quad \downarrow$-ve
$v_{i / m}=-\mu v_{0}$
$v_{i / m}=+4 / 3 \times 4$
$v_{i / m}=+16 / 3$
$v_{i / G}=\frac{v_{i / m}}{\mu}$
$v_{i / G}=\frac{+16 / 3}{4 / 3}=4$
$v_{i / 0}=4-(-4)=8 \mathrm{~m} / \mathrm{s}$
Q. 10 [5 mm]
$\mathrm{u}=-24$
$v=\frac{u f}{u+f}$
$v=\frac{-24 \times 15}{-24+15}=\frac{124 \times 15}{8}=40$
$\Rightarrow D=200-24-40=136 \mathrm{~cm}$
$\frac{R_{I}}{-0.03}=\frac{v}{u}=\frac{40}{-24}$
$\mathrm{R}_{\mathrm{I}}=\frac{40}{24} \times 0.03=0.05 \mathrm{~mm}$
$\Rightarrow \mathrm{d}=0.05 \times 2+0.06=0.16 \times 10^{-3} \mathrm{~m}$
$\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}=\frac{6000 \times 10^{-10} \times 136 \times 10^{-2}}{0.16 \times 10^{-3}}$
$\beta=51 \times 10^{-4} \mathrm{~m}=5.1 \mathrm{~mm}$

KVPY

PREVIOUS YEAR'S

Q. 1 (a) Object is at $2 f$, so the image is formed at the same distance from the lens $(20 \mathrm{~cm})$ to the right.
(b) Since light has to retrace its path, the mirror should be placed so that the previous image is at its centre of curvature. Thus the mirror must be placed 30 cm to the right of the lens.
(c) For the plane mirror, reflection forms an image 40 cm to the right of the lens. Using the lens formula, we see that the final image is formed at a distance of $40 / 3 \mathrm{~cm}$ to the left of the lens.
Q. 2 (B)

r should be such that rays beyond it got totally internally reflected
For this $\theta>C$ or $\sin \theta>\sin C$
also $\mu=\frac{1}{\sin \mathrm{C}} \quad \therefore \frac{\mathrm{r}}{\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}}>\frac{1}{\mu}$
In limiting case $\frac{\mathrm{r}}{\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}}=\frac{1}{\mu}$
solving we get $r=\frac{h}{\sqrt{\mu^{2}-1}}$
Q. 3 (3)

This system will behave as slab.
\therefore No dispersion
No deviation
Q. 4 (A)

now $\frac{\mu}{V_{1}}-\frac{1}{\infty}=\frac{\mu-1}{\mathrm{R}} \Rightarrow \mathrm{V}_{1}=\frac{\mu \mathrm{R}}{\mu-1}$
now $\frac{1}{\mathrm{~V}_{\mathrm{f}}}-\frac{\mu}{-\left(2 \mathrm{R}-\mathrm{V}_{1}\right)}=\frac{1-\mu}{-\mathrm{R}}$
replace V_{1} by $\frac{\mu R}{\mu-1}$ and solving for V_{f}
we get $\mathrm{V}_{\mathrm{f}}=\frac{\mathrm{R}(\mu-2)}{2(\mu-1)}$
First image is real and second is virtual.
Q. 5 (D)

At first incidence light is deviated towards the normal therefore $\mu_{2}>\mu_{1}$. Also at second incidence TIR takes place therefore $\mu_{2}>\mu_{3}$, also $\mu_{1}>\mu_{3}$ because for the same angle in medium μ_{2}, angle in μ_{1}, medium is less.

$\therefore \mu_{3}<\mu_{1}<\mu_{2}$
Q. 6 (B)
$1.5 \times$ sini $=1.2 \mathrm{sinr}$
$\operatorname{Sinr}=\frac{1.5}{1.2} \sin \mathrm{i}$
TIR should not take place
\therefore sinr < 1
$\frac{1.5}{1.2} \sin \mathrm{i}<1$
Sini $<\frac{12}{15}$
sini < 0.8
$\sin 45=\frac{1}{\sqrt{2}}=0.707$
$\mathrm{i}_{\text {max }}>45$
Q. 7 (C)

$1 \times \sin \mathrm{i}=\mu \sin \mathrm{r}$
$\sin (90-\theta)=\frac{4}{3} \sin r$
$\tan \mathrm{r}=\frac{\mathrm{x}}{2 \mathrm{~h}}=\frac{4}{7 \times 2}=\frac{2}{7}$
$\sin \mathrm{r}=\frac{2}{\sqrt{53}}$
$\cos \theta=\frac{4}{3} \times \frac{2}{\sqrt{53}}=\frac{8}{3 \sqrt{53}}$
Q. 8 (C)
$\mathrm{i}=45^{\circ} \geq \mathrm{C}$
For minimum refractive index $\mathrm{C}=45^{\circ}$
$\mu \sin 45^{\circ}=1$
$\mu=\sqrt{2}=1.42$
Q. 9 (D)

Only half part of the lens will be used so its intensity will be decreased
Q. 10 (A)

$$
\mathrm{R}=\frac{\mathrm{h}^{\prime}}{\sqrt{\mu^{2}-1}}
$$

Q. 11 (D)
$\mu_{1}<\mu_{3}<\mu_{2}$
Q. 12 (A)

Perpendicular incidence so no deviation.
Q. 13 (D)
$\angle \mathrm{i}=2 \angle \mathrm{r}$
$\frac{\sin i}{\sin r}=\sqrt{3}$
$2 \cos \mathrm{r}=\sqrt{3}$
$r=30^{\circ} \& i=60^{\circ}$
Note : But for $\mathrm{r}=30^{\circ}$ TIR cannot take place at B.
Q. 14 (B)
$\mu(\lambda)=B+\frac{C}{\lambda^{2}}+\ldots$
$\mu_{2}>\mu_{1}>\mu_{3}$
Q. 15 (D)
60°

Q. 16 (B)
$\mathrm{u}=-10 \mathrm{~m}$
$\mathrm{R}=1.5 \mathrm{~m}$
$\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{2}{\mathrm{R}}$
$\frac{1}{\mathrm{v}}-\frac{1}{10}=\frac{2}{1.5}$
$\mathrm{v}=\frac{30}{43}$
$\mathrm{m}=-\frac{\mathrm{v}}{\mathrm{u}}=\frac{30}{43 \times 10} \sim 0.07$
Q. 17 (A)

$S_{1}=\frac{\pi}{4}-r$
$\mathrm{S}_{2}=\pi-2 \mathrm{r}$
$S_{3}=\frac{\pi}{4}-r$
$S=S_{1}+S_{2}+S_{3}=\frac{3 \pi}{2}-4 r$
Q. 18 (A)

On refraction of light, frequency remain unchanged. However speed and wavelength get change.
Q. 19 (A)

$45^{\circ}>\theta_{c}$
.....(3)
$\sin 45^{\circ}>\sin \theta_{c}$
$\frac{1}{\sqrt{2}}>\frac{1}{\mu}$
$\mu>\sqrt{2}$
taking equation 2 only
$45-\theta_{c}>r, \sin \left(45^{\circ}-\theta_{c}\right)>\sin r$
$\frac{1}{\sqrt{2}} \cos \theta_{c}-\frac{1}{\sqrt{2}} \sin \theta_{c}>\frac{\sin 45}{\mu}$
$\frac{\sqrt{\mathrm{u}^{2}}-1}{\mu}-\frac{1}{\mu}>\frac{1}{\mu}, \sqrt{\mu^{2}}-1>2, \mu>\sqrt{5}$
\therefore Ans is $\mu>\sqrt{5}$ as this is common solution.
Q. 20 (B)

$\mathrm{f}=10 \mathrm{~cm}$
After silvering of flat face lens behave as mirror of focal length $f_{\text {eq }}$.

$\frac{1}{\mathrm{f}_{\text {eq }}}=\frac{1}{\mathrm{f}_{1}}+\frac{1}{\mathrm{f}_{2}}+\frac{1}{\mathrm{f}_{3}}$
$\frac{1}{f_{\text {eq }}}=\frac{2}{f_{1}}+\frac{1}{f_{2}}$
$\frac{1}{\mathrm{f}_{\text {eq }}}=\frac{2}{10}+\frac{1}{\infty}$
$\mathrm{f}_{\mathrm{eq}}=5$
mirror formula $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{v}}$
$\frac{1}{-5}=\frac{1}{-30}+\frac{1}{v}$
$\mathrm{v}=-6 \mathrm{~cm}$
Image is real and 6 cm away from silvered lens.
Q. 21 (A)

$\mathrm{d}=$ radius of disc
$\mathrm{A}=\pi \mathrm{d}^{2}$
From similar triangle
$\frac{\mathrm{AD}}{\mathrm{FG}}=\frac{\mathrm{DE}}{\mathrm{GE}}$
$\frac{\mathrm{r}}{\mathrm{d}}=\frac{\mathrm{R}-\frac{\mathrm{R}}{2 \cos \theta}}{\frac{\mathrm{R}}{2}-\left(\mathrm{R}-\frac{\mathrm{R}}{2 \cos \theta}\right)}$
$\frac{\mathrm{r}}{\mathrm{d}}=\frac{2 \cos \theta-1}{-\cos \theta+1}$
$\mathrm{d}=\left(\frac{-\cos \theta+1}{2 \cos \theta-1}\right) . \mathrm{r}$
$\because \sin \theta=\frac{\mathrm{r}}{\mathrm{R}}$
$\therefore \cos \theta=\frac{\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}}{\mathrm{R}}$
$\cos \theta=\left(1-\frac{r^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
$\cos \theta=1-\frac{1}{2} \frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}$
$1-\cos \theta=\frac{\mathrm{r}^{2}}{2 \mathrm{R}^{2}}$
$\mathrm{d}=\frac{\mathrm{r}^{2} \times \mathrm{r}}{2 \mathrm{R}^{2}\left[2\left(1-\frac{\mathrm{r}^{2}}{2 \mathrm{R}^{2}}\right)-1\right]}$
$d=\frac{r^{3}}{2 R^{2}\left[1-\frac{r^{2}}{2 R^{2}}\right]}=\frac{r^{3}}{2 R^{2}} \Rightarrow \mathrm{~A}=\pi \mathrm{d}^{2}=\frac{\pi r^{6}}{4 \mathrm{R}^{4}}$
Q. 22 (D)

$\frac{1}{\mathrm{f}}=\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{1}}\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
$\mathrm{R}_{1}=-0.2 \quad ; \quad \mathrm{R}_{2}=0.2$
$\mathrm{n}_{2}=1.6 \quad ; \quad \mathrm{n}_{1}=2.0$
$\frac{1}{\mathrm{f}}=\left[\frac{1.6-2}{2}\right]\left[\frac{1}{-0.2}-\frac{1}{0.2}\right]$
$\Rightarrow \frac{(-0.4)}{2} \times \frac{2}{(-0.2)}$
$\frac{1}{\mathrm{f}}=\frac{2}{1}$
$\mathrm{f}=0.5$ metre
Converging lens as f is positive.
Q. 23 (B)
Q. 24 (C)

Snell law
$\sin i=\mu \sin r$
$\sin i=\left(a+\frac{b}{\lambda^{2}}\right) \sin r$
Differentiating with respect to λ
$0=\cos r d r\left(a+\frac{b}{\lambda^{2}}\right)+\sin r\left(\frac{b}{\lambda^{3}}(-2)\right) d \lambda$
$0=\cos r d r\left(\frac{a \lambda^{2}+b}{\lambda^{2}}\right)+\sin r\left(\frac{-2 b}{\lambda^{3}}\right) d \lambda$
$\frac{\mathrm{d} \lambda 2 \mathrm{~b} \sin \mathrm{r}}{\lambda}=\cos \mathrm{rdr}\left(\mathrm{a} \lambda^{2}+\mathrm{b}\right)$
$\mathrm{dr}=\frac{2 \mathrm{bd} \lambda}{\lambda}=\frac{\tan \mathrm{r}}{\left(\mathrm{a} \lambda^{2}+\mathrm{b}\right)}$
$\delta r=\frac{(2 b \tan r) \delta \lambda}{\left(a \lambda^{3}+b \lambda\right)}$
Q. 25 (A)

Distance between object to image in both case is 90 cm . Because object is at same position so image also be at same position in both cases.
Q. 26
(B)

For TIR
$40^{\circ}>\theta_{c}$
$\sin 40^{\circ}>\sin \theta_{\text {c }}$
$\sin 40^{\circ}>\frac{\mu_{\mathrm{r}}}{\mu_{\mathrm{D}}}$
$\sin 40^{\circ}>\frac{\mu_{\mathrm{w}}}{\mu_{\mathrm{g}}}$
$\mu_{\mathrm{g}}>\frac{\mu_{\mathrm{w}}}{\sin 40^{\circ}}$
$\mu>\frac{1.33}{0.64}$
$\mu>2.07$
Q. 27 (D)

$\mathrm{f}=10 \mathrm{f}=10 \mathrm{~cm}$
$\mathrm{u}=-15 \mathrm{~cm}, \mathrm{f}=+10 \mathrm{~cm}$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{f u}{u+f}$
$\mathrm{v}=\frac{(+10)(-15)}{-15+10}$
$\mathrm{v}=+30 \mathrm{~cm}$
$\frac{d v}{d t}=\frac{v^{2}}{u^{2}} \frac{d u}{d t}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\left(\frac{+30}{-15}\right)^{2}(+2 \mathrm{~cm} / \mathrm{s})$
$\frac{\mathrm{dv}}{\mathrm{dt}}=+8 \mathrm{~cm} / \mathrm{s}$ (away from lens)
Q. 28 (B)

Snell law $1 \times \sin 90^{\circ}=\frac{4}{3} \sin \mathrm{r}$
$\sin \mathrm{r}=\frac{3}{4}$
$\tan \mathrm{r}=\frac{3}{\sqrt{7}}$
$x=6 \tan r=\frac{6 \times 3}{\sqrt{7}}=\frac{18}{\sqrt{7}}=6.8$
(D) diameter $=2 x+0.6 \Rightarrow 14.2$
(D) diameter $=2 x+0.6 \Rightarrow 14.2$

Area $=\frac{\pi \mathrm{D}^{2}}{4}=\frac{3.14 \times(14.2)^{2}}{4} \mathrm{~m}^{2} \approx 160 \mathrm{~m}^{2}$
Q. 29 (A)

$\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}$
$\frac{1}{v}=\frac{1}{f}+\frac{1}{u}$
$v=\frac{f u}{f+u}$
$m=\frac{v}{u}=\frac{f}{f+u}$
As lens is oscillating with small amplitude A.
\therefore Image will oscillate with $\mathrm{m}^{2} \mathrm{~A}$
When lens move left then O will come near to lens thus I will go away. Thus image is oscillating out of phase with respect to lens.

$$
\mathrm{m}=\frac{5}{5-20} \Rightarrow \frac{5}{-15}=-\frac{1}{3}
$$

Amplitude of image $=\left(\frac{1}{3}\right)^{2} \mathrm{~A}=\frac{\mathrm{A}}{9}$
Q. 30 (C)

Meta materials are the material for which refractive index is negative for them. Refraction diagram is shown, here. In question same type of diagram is given.

Q. 31 (C)

From diagram $r=45^{\circ}$
using snell law
$\frac{4}{3} \sin \mathrm{i}=\sin \mathrm{r}$
$\sin \mathrm{i}=\frac{3}{\sqrt{2} \times 4}$

$\tan \mathrm{i}=\frac{3}{\sqrt{23}}$
$\tan \mathrm{i}=\frac{\mathrm{h}-10}{\mathrm{~h}}$
$\mathrm{h} \tan \mathrm{i}=\mathrm{h}-10$
$10=\mathrm{h}[1-\tan \mathrm{i}]$
$h=\frac{10}{1-\tan \mathrm{i}}$
$\Rightarrow 27$ approx.
$=27 \mathrm{~cm}$
Q. 32
(D)
$\mu_{\text {air }}=1$
$\mu_{\text {water }}^{\text {air }}=1.33$
$\mu_{\mathrm{cs}_{2}}=1.6$

$\frac{1}{\mathrm{f}}=\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}-1\right)\left[-\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
$\frac{1}{\mathrm{f}}=-\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}-1\right)\left[\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right]$
for diverging lens f must be -ve .
\therefore for this $\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}>1$
$\mathrm{n}_{2}>\mathrm{n}_{1}$
\therefore Lens should be filled with liquid which has more refractive index in comparison to liquid in which lens is immersed.
\therefore Ans (D) is the correct option as
$\mu_{\mathrm{cs}_{2}}>\mu_{\text {water }}$
Q. 33 (A)

$\mathrm{I}=\mathrm{I}_{\mathrm{COM}}+\mathrm{Mx}^{2}$
First it will decrease because x is increasing and axis is coming closer to COM axis. After Passing COM axis, M\&I will again increase.
$\Rightarrow \mathrm{I}$ is minimum about the axis passing through COM if we compare I about parallel axis

Q. 34 (C)

Applying snell's law

for surface AB :
$\mu_{1} \sin 45^{\circ}=\mu_{2} \sin \theta_{1}$
....(1)
for surface AC :
$\mu_{2} \sin \left(\omega-\theta_{1}\right)=\mu_{3} \sin 45$
$\mu_{2}^{2} \sin 45^{\circ}=\mu_{2} \cos \theta_{1}$
.....(2) $\omega=90^{\circ}$
Squaring and adding equation (1) \& (2)
$\frac{\mu_{1}^{2}}{2}+\frac{\mu_{3}^{2}}{2}=\mu_{2}^{2} \Rightarrow \mu_{1}^{2}+\mu_{3}^{2}=2 \mu_{2}^{2}$
Q. 35 (A)

$r+\theta_{c}=90^{\circ}$
....(1)
$1 \times \sin \left(90^{\circ}-\alpha\right)=\mu \sin r$
$\cos \alpha=\mu \sin r$

$$
\ldots \text {...(2) }
$$

$90^{\circ}-\mathrm{e}>\theta_{\text {c }}$
....(3)
$\mu \sin \mathrm{e}=1 \times \sin \alpha$
.....(4)
(3) \& (4)
$90^{\circ}-\theta \mathrm{c}>\mathrm{e}$
$\cos \theta c>\sin e$
$\cos \theta c>\frac{\sin \alpha}{\mu}$
$1-\sin ^{2} \theta c>\frac{1}{\mu^{2}}\left[1-\mu^{2} \sin ^{2} r\right]$
$1-\frac{1}{\mu^{2}}>\frac{1}{\mu^{2}}\left[1-\mu^{2} \sin ^{2}\left(90^{\circ}-\theta c\right)\right]$
$1-\frac{1}{\mu^{2}}>\frac{1}{\mu^{2}}-\cos ^{2} \theta c$
$1-\frac{2}{\mu^{2}}>-\left[1-\frac{1}{\mu^{2}}\right]$
$2>\frac{3}{\mu^{2}}$
(1) \& (2)
$\cos \alpha=\mu \sin \left(90^{\circ}-\theta c\right)$
$\cos \alpha=\mu \cos \theta c$
$\cos \alpha<1$
$\mu \cos \theta c<1$
$\sqrt{1-\frac{1}{\mu^{2}}}<\frac{1}{\mu}$
$1-\frac{1}{\mu^{2}}<\frac{1}{\mu^{2}}$
$\mu<\sqrt{2}$
$\therefore \sqrt{\frac{3}{2}}<\mu<\sqrt{2}$

Q. 36 (C)

Incident Ray $=-\hat{\mathbf{j}}$
Perpendicular

Reflected Ray
Vector $\Rightarrow \frac{\sqrt{3}}{2} \hat{i}-\frac{1}{2} \hat{j}$

Q. 37 (B)

Theoretical
Q. 38 (D)
(i) For plano-concave lens or concave lens if object is placed beyond focus image is erect.
(ii) For convex lens If object is placed beyond focus image is inverted.
Q. 39 (C)
$\mathrm{n}=\frac{\sin \mathrm{i}}{\sin \mathrm{r}}=\frac{\sin \left(\frac{\delta_{\mathrm{m}}+\mathrm{A}}{2}\right)}{\sin \left(\frac{\mathrm{A}}{2}\right)}$
$1.5+\frac{0.004}{\lambda^{2}}=\frac{\sin \left(\frac{\delta_{\mathrm{m}}+\mathrm{A}}{2}\right)}{\sin \left(\frac{\mathrm{A}}{2}\right)}$
$\lambda_{m} \propto \frac{1}{\lambda}$
$\therefore \delta_{\mathrm{m}}\left(\lambda_{1}\right)>\delta_{\mathrm{m}}\left(\lambda_{2}\right)$ if $\lambda_{1}<\lambda_{2}$

Q. 40 (D)

$9 \theta-\theta_{1}+90-\theta_{2}+\theta=180$
$2 \theta_{1}+2 \theta_{2}=180^{2} \quad \theta=\theta_{1}+\theta_{2}$
$\theta_{1}+\theta_{2}=90 \quad \theta=90^{\circ}$
Q. 41 (B)

The double rainbow has red on the inside and violet on the outside.
Q. 42 (C)

$\frac{\mathrm{A}_{0}}{\mathrm{~A}}=\left[\frac{\mathrm{u}}{\mathrm{v}}\right]^{2} \Rightarrow \mathrm{~A}_{0}=10^{12} \mathrm{~A}$
Q. 43 (B)
$\mathrm{d}=\frac{5}{4 / 3}+\frac{2}{3 / 2}=\frac{15}{4}+\frac{4}{3}=5.08 \mathrm{~cm}$
Q. 44 (B)
Q. 45 (C)
Q. 46 (C)

Light will come out when the angle is less than critical angle 'C'
$\operatorname{sinc}=\frac{1}{1.33}=\frac{3}{4}$
$\Rightarrow \mathrm{c}=50^{\circ}$ (approx)
$\omega \mathrm{t}=2 \mathrm{c}$
$t=t=\frac{2 \times \frac{50}{180} \times 60}{2 \pi}=16.27 \mathrm{sec}$
Q. 47 (C)

Given that : $\mu_{1}<\mu_{2}<\mu_{3}<\mu_{4}$ $\sin \mathrm{c}<\sin 30^{\circ}$ (for emerging)
$\frac{1}{\mu}<\frac{1}{2}$
$\mu>2$
So, rays 3 and 4 will emerge out
Q. 48 (D)
R.I. of Prism B should be less than R.I. of prism A
Q. 49 (C)

From theory
Q. 50 (A)

From theory

Q. 51 (C)

From geometry, $\alpha+\theta_{i}=\frac{\pi}{2} \Rightarrow \alpha=\frac{\pi}{2}-\theta_{\mathrm{i}}$
$\beta+\alpha=\frac{\pi}{2} \Rightarrow \beta=\theta_{\mathrm{i}}$
$\beta+\gamma=\frac{\pi}{2} \Rightarrow \gamma=\frac{\pi}{2}-\theta_{i}$
Also $A D|\mid B C$ \& $A B \| C D$
$\therefore \quad \mathrm{ABCD}$ is a parallelogram \& $\mathrm{AB}=\mathrm{CD}$
Also, $\triangle \mathrm{ABQ} \cong \mathrm{DCDS}$
$\therefore \quad$ From trignometry
$\frac{\mathrm{AQ}}{\mathrm{QB}}=\frac{\mathrm{CR}}{\mathrm{BR}}$

Let length of each side of square by $1, \mathrm{AQ}=\mathrm{x}$, \& $\mathrm{QB}=\mathrm{y}$

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{x}}{\mathrm{y}}=\frac{\ell-\mathrm{x}}{\ell-\mathrm{y}} \Rightarrow \mathrm{x}=\mathrm{y} \\
\therefore & \theta_{\mathrm{i}}=\frac{\pi}{4}
\end{array}
$$

Q. 52 (B)

Magnification (m) $=+\frac{\mathrm{v}}{\mathrm{u}}$
From lens formula,
$\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \Rightarrow \frac{\mathrm{u}}{\mathrm{v}}-1=\frac{\mathrm{u}}{\mathrm{f}} \Rightarrow \frac{\mathrm{u}}{\mathrm{v}}=\frac{\mathrm{u}}{\mathrm{f}}+1$
\therefore graph between $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)$ [inverse of magnification] and u will be straigh line with slope $\frac{1}{\mathrm{f}}$
From graph, slope $=250$
$\therefore \mathrm{f}=\frac{1}{250} \mathrm{~m}=0.004 \mathrm{~m}$

Q. 53 (C)

(A) Rainbow occurs because of refraction, reflection \& dispersion of light.
(B) Dispersion
(C) Due to presence of concentric grooves in compact disc, light gets diffracted \& produced colorful pattern.
(D) Due to scattering of blue color.

Q. 54 (B)

Theoretical \rightarrow B

Q. 55 (A)

Since the images are being made on screen, hence real.
\therefore Image will be inverted
Also since blue and white are nearer to lens, hence their real image will be far from lens as compared to red \& green
Hence Ans. (A)
Q. 56 (A)
$\mathrm{n}_{\mathrm{P}} \sin \theta_{\mathrm{C}}=\mathrm{n}_{\mathrm{L}} \sin 90^{\circ}$
$\theta_{\mathrm{C}}=\sin ^{-1}\left(\frac{\mathrm{n}_{\mathrm{L}}}{\mathrm{n}_{\mathrm{P}}}\right)$
$\theta_{\mathrm{C}}=\sin ^{-1}\left(\frac{\mathrm{C}_{\mathrm{A}} \mathrm{n}_{\mathrm{A}}+\left(1-\mathrm{C}_{\mathrm{A}}\right) \mathrm{n}_{\mathrm{B}}}{1.5}\right)$
\rightarrow Graph between θ_{C} and C_{A} will be curve of $\sin ^{-1}$, Check for $\mathrm{C}_{\mathrm{A}}=0.5$, to find most appropriate graph
$\theta_{C}=\sin ^{-1}\left(\frac{0.5(1.5)+0.5(1.3)}{1.5}\right)$
$\theta_{\mathrm{C}}=\sin ^{-1}\left(\frac{14}{15}\right) \simeq 69^{\circ}$
\therefore Correct option is (A)
Q. 57 (B,C,D)
$\mathrm{n}_{1}>\mathrm{n}_{2}$
this means light is going from rarer to denser medium.
So θ_{2} will always be less than θ_{1}
$\mathrm{n}_{2} \sin \theta_{1}=\mathrm{n}_{1} \sin \theta_{2}$
So $\cos \left(\theta_{2}\right)$ will never be imaginary and also q_{2} can't be 90°.
In question incorrect options are asked.
$\therefore \quad(\mathrm{B}, \mathrm{C}, \mathrm{D})$
Q. 58 (B)

Camera will receive minimum intensity when. Light will incident at Brewsters.s angle.

$$
\begin{aligned}
& \therefore \tan \mathrm{i}=\mu=4 / 3 \\
& \Rightarrow \mathrm{i}=53^{\circ}
\end{aligned}
$$

time taken by sun to go from A to P
will be $\frac{12 \mathrm{hr}}{180^{\circ}} \times 143^{\circ}=9.53 \mathrm{hr}=9 \mathrm{hr} 32 \mathrm{~min}$.
\therefore time $=6 \mathrm{AM}+9 \mathrm{hr} 32 \mathrm{~min} \Rightarrow 3: 32 \mathrm{PM}$
JEE-MAIN
PREVIOUS YEAR'S
Q. $1 \quad[15 \mathrm{~cm}]$
$\mathrm{m}=\frac{\mathrm{f}}{\mathrm{f}+\mathrm{u}} \Rightarrow \mathrm{m}_{1}=-\mathrm{m}_{2}$
$\therefore \quad \frac{f}{f+(-10)}=\frac{-f}{f+(-20)}$

So $\frac{1}{f-10}=-\frac{1}{f-20}$
$\mathrm{f}-10=-\mathrm{f}+20$
$\therefore \quad 2 \mathrm{f}=+30$
$\therefore \quad \mathrm{f}=+15 \mathrm{~cm}$
Q. 2 (4)

Same orientation so image is virtual. It is combination or real object and virtual image using height it is possible only from convex mirror.
Q. 3 (3)

Both obtain same angle, since image can be at a distance greater than 25 cm , object can be moved closer to eye Eye
Q. 4 [150]

$$
\begin{aligned}
& =3(\mathrm{x}+\mathrm{y}) \\
& =3(50) \\
& =150 \mathrm{~cm}
\end{aligned}
$$

Q. 5
(1)

Deviation is minimum in a prism when :
$i=e, r_{1}=r_{2}$ and ray (2) is parallel to base of rism.

Q. 6
(2)
$\frac{1}{\mathrm{~F}}=\left[\frac{\mu_{\mathrm{L}}}{\mu_{\mathrm{S}}}-1\right]\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
If $\mu_{\mathrm{L}}=\mu_{\mathrm{S}} \Rightarrow \frac{1}{\mathrm{~F}}=0 \Rightarrow \mathrm{~F}=\infty$
Q. 7 (1)

Red light and blue light have different wavelength and different frequency.
Q. 8
[12]
$\omega_{1}=0.02 ; \mu_{1}=1.5 ; \omega_{2}=0.03$;
$\mu_{2}=1.6$
Achromatic combination
$\therefore \theta_{\text {net }}=0$
$\theta_{1}-\theta_{2}=0$
$\theta_{1}=\theta_{2}$
$\omega_{1} \delta_{2}=\omega_{2} \delta_{2}$
$\& \delta_{\text {net }}=\delta_{1}-\delta_{2}=2^{\circ}$
$\delta_{1}-\frac{\omega_{1} \delta_{1}}{\omega_{2}}=2^{\circ}$
$\delta_{1}\left(1-\frac{\omega_{1}}{\omega_{2}}\right)=2^{\circ}$
$\delta_{1}\left(1-\frac{2}{3}\right)=2^{\circ}$
$\delta_{1}=6^{\circ}$
$\delta_{1}=\left(\mu_{1}-1\right) \mathrm{A}_{1}$
$6^{\circ}=(1.5-1) \mathrm{A}_{1}$
$\mathrm{A}_{1}=12^{\circ}$
Q. 9 (4)
$R^{2}=r^{2}+(R-t)^{2}$
$R^{2}=r^{2}+R^{2}+t^{2}-2 R t$

Neglecting t^{2}, we get

$R=\frac{\mathrm{r}^{2}}{2 \mathrm{t}}$
$\therefore \frac{1}{\mathrm{f}}=(\mu-1)\left(\frac{1}{\mathrm{R}}-\frac{1}{\infty}\right)=\frac{\mu-1}{\mathrm{R}}$
$\mathrm{f}=\frac{\mathrm{R}}{\mu-1}=\frac{\mathrm{r}^{2}}{2 \mathrm{t}(\mu-1)}=\frac{\left(3 \times 10^{-2}\right)^{2}}{2 \times 3 \times 10^{-3} \times\left(\frac{3}{2}-1\right)}$
$=\frac{9 \times 10^{-4}}{6 \times 10^{-3} \times 1} \times 2$
$\mathrm{f}=0.3 \mathrm{~m}=30 \mathrm{~cm}$
Q. 10 [30]
$\lambda \mathrm{m}=\frac{\lambda_{\mathrm{a}}}{\mu} \Rightarrow \mu=\frac{3}{2}$
$\frac{\mu}{v}-\frac{1}{u}=\frac{\mu-1}{\mathrm{R}}$
$\frac{3}{2 \times 10}+\frac{1}{15}=\frac{\frac{3}{2}-1}{\mathrm{R}}$
$\mathrm{R}=\frac{30}{13}$
$=30$
Q. 11 (2)

If distant objects are blurry then problem is Myopia. If objects are distorted then problem is Astigmatism
Q. 12 (2)

Assuming that the right angled prism is an isoceles prism, so the other angles will be 45° each.
\Rightarrow Each incident ray will make an angle of 45° with the normal at face PR.
\Rightarrow The wavelength corresponding to which the incidence angle is less than the critical angle, will pass through PR.
$\Rightarrow \theta \mathrm{C}=$ critical angle
$\Rightarrow \theta \mathrm{C}=\sin -1\left(\frac{1}{\mu}\right)$
\Rightarrow If $\theta \mathrm{C} \geq 45^{\circ}$
the light ray will pass
$\Rightarrow(\theta \mathrm{C}) \operatorname{Red}=\sin -1\left(\frac{1}{1.27}\right)=51.94^{\circ}$
Red will pass.
$\Rightarrow(\theta \mathrm{C})$ Green $=\sin -1\left(\frac{1}{1.42}\right)=44.76^{\circ}$
$\Rightarrow(\theta \mathrm{C})$ Blue $=\sin -1\left(\frac{1}{1.49}\right)=42.15^{\circ}$
Blue will not pass
\Rightarrow So only red will pass through PR.
Q. 13 [25]
Q. 14 (4)
Q. 15 [60]
Q. 16 (4)
Q. 17 (2)
Q. 18 (3)
Q. 19 (1)
Q. 20 (1)
Q. 21 [600]
Q. 22 (2)
Q. 23 [2]
Q. 24 (2)

Height of water observed by oberver
$=\frac{\mathrm{H}}{\mu_{\mathrm{w}}}=\frac{\mathrm{H}}{(4 / 3)}=\frac{3 \mathrm{H}}{4}$
Height of air observed by observer $=17.5-\mathrm{H}$
According to question, both height observed by observer is same.
$\frac{3 \mathrm{H}}{4}=17.5-\mathrm{H}$
$\Rightarrow \mathrm{H}=10 \mathrm{~cm}$
Option (2)
Q. 26

Green will not pass
Q. 27 [50]
Q. 28 [5]

$$
\begin{aligned}
& \mathrm{i}=\mathrm{A}=60^{\circ} \\
& \delta_{\text {min }}=2 \mathrm{i}-\mathrm{A}
\end{aligned}
$$

$$
=2 \times 60^{\circ}-60^{\circ}=60^{\circ}
$$

$\mu=\frac{\sin ^{-1}\left(\frac{\delta_{\text {min }}+\mathrm{A}}{2}\right)}{\sin ^{-1}\left(\frac{\mathrm{~A}}{2}\right)}=\sqrt{3}$
$\mathrm{V}_{\text {pism }}=\frac{3 \times 10^{8}}{\sqrt{2}}$
$\mathrm{AP}=10 \times 10^{-2} \times \frac{\sqrt{3}}{2}$
time $=\frac{5 \times 10^{-2}}{3 \times 10^{8}} \times \sqrt{3} \times \sqrt{3}$
$=5 \times 10^{-10} \mathrm{sec}$
Ans. 5
Q. 29 (1)
Q. 30 (1)
Q. 31 (4)

Mirror used is convex mirror (rear-view mirror)
$\therefore \mathrm{V}_{\mathrm{I} / \mathrm{m}}=-\mathrm{m}^{2} \mathrm{~V}_{\mathrm{O} / \mathrm{m}}$
Given,
$\mathrm{V}_{\mathrm{O} / \mathrm{m}}=40 \mathrm{~m} / \mathrm{s}$
$\mathrm{m}=\frac{\mathrm{f}}{\mathrm{f}-\mathrm{u}}=\frac{10}{10+190}=\frac{10}{200}$
$\therefore \mathrm{V}_{\mathrm{V} / \mathrm{m}}=-\frac{1}{400} \times 40=-0.1 \mathrm{~m} / \mathrm{s}$
\therefore Car will appear to move with speed $0.1 \mathrm{~m} / \mathrm{s}$. Hence option (4)

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 (C)

Initially most of part will be transmitted. When $\theta>\mathrm{i}_{\mathrm{c}}$, all the light rays will be total internal reflected. So transmitted intensity $=0$
So correct answer is (C)
Q. 2 [2]

$\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
$\frac{7}{4 v}-\frac{1}{-24}=\frac{\frac{7}{4}-1}{6}$
$\frac{7}{4 \mathrm{v}}=\frac{3}{24}-\frac{1}{24}=\frac{2}{24}=\frac{1}{12}$
$\frac{7 \times 12}{4}=\mathrm{V}=21 \mathrm{~cm}$
$\frac{21}{\mathrm{OS}^{\prime \prime}}=\frac{7 / 4}{4 / 3}$
$\frac{21}{\mathrm{OS}^{\prime \prime}}=\frac{7}{4} \times \frac{3}{4}$
OS" = 16
$\therefore \quad B S^{\prime \prime}=2 \mathrm{~cm}$
Q. 3 (B)
$\frac{1}{f_{1}}=(\mu-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$

$\frac{1}{f_{1}}=(1.5-1)\left[\frac{1}{14}-\frac{1}{\infty}\right]$
$\frac{1}{f_{1}}=\frac{0.5}{14}$
$\frac{1}{f_{2}}=(1.2-1)\left[\frac{1}{\infty}-\frac{1}{-14}\right]$
$\frac{1}{f_{2}}=\frac{0.2}{14}$
$\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{0.5}{14}+\frac{0.2}{14}$
$\frac{1}{f}=\frac{0.7}{14}$
$\frac{1}{v}=\frac{7}{140}-\frac{1}{40}=\frac{1}{20}-\frac{1}{40}$
$\frac{1}{v}=\frac{2-1}{40}$
$\mathrm{v}=40 \mathrm{~cm}$
Q. 4 (B)
$\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}}$
for metamaterials
$\mathrm{v}=\frac{\mathrm{c}}{|\mathrm{n}|}$
Q. 5 (C)

Meta material has a negative refractive index
$\therefore \sin \theta_{2}=\frac{n_{1}}{n_{2}} \sin \theta_{1} \Rightarrow n_{2}$ is negative
$\therefore \theta_{2}$ negative
Q. 6 (C)
$\mathrm{v}=8 \mathrm{~m}$ (magnification $=-\frac{1}{3}=\frac{\mathrm{v}}{\mathrm{u}}$)
$u=-24 m$
$\frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{\infty}+\frac{1}{R}\right)$
$\mathrm{R}=3 \mathrm{~m}$
Hindi : $v=8 m\left(=-\frac{1}{3}=\frac{v}{u}\right)$
$\mathrm{u}=-24 \mathrm{~m}$
$\frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{\infty}+\frac{1}{R}\right)$
$\mathrm{R}=3 \mathrm{~m}$
Q. 7 (A)

Angle between given rays is 120° so angle of incidence is 30°

Q. 8 (A), (C)
$\frac{1}{f_{\text {film }}}=\left(n_{1}-1\right)\left(\frac{1}{R}-\frac{1}{R}\right) \Rightarrow f_{\text {film }}=\infty$ (inf inite)
\therefore No effect of presence of film.

From Air to Glass

Using single spherical Refraction :-
$\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{\mathrm{n}_{2}-1}{\mathrm{R}}$
$\frac{1.5}{\mathrm{v}}-\frac{1}{\propto}=\frac{1.5-1}{\mathrm{R}} \Rightarrow \mathrm{v}=3 \mathrm{R}$
$\therefore \mathrm{f}_{1}=3 \mathrm{R}$
From Glass to Air :-
$\frac{1}{v}-\frac{n_{2}}{u}=\frac{1-n_{2}}{-R}$
$\Rightarrow \frac{1}{v}-\frac{1.5}{\propto}=\frac{1-1.5}{-R}$
$\Rightarrow \mathrm{v}=2 \mathrm{R}$
$\therefore \mathrm{f}_{2}=2 \mathrm{R}$
Q. 9 (C)
$\operatorname{Sin} \mathrm{i}_{\mathrm{C}}=\frac{\mathrm{r}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{n}_{\ell}}{\mathrm{n}_{\mathrm{B}}}=\frac{\mathrm{r}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}} \\
& \Rightarrow \mathrm{n}_{\ell}=\frac{\mathrm{r}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}} \times 2.72 \\
& =\frac{5.77}{11.54} \times 2.72=1.36
\end{aligned}
$$

Q． 10 （C）
$\vec{B}_{R}=\vec{B}$ due to ring

$\mathrm{B}_{1}=\mathrm{B}$ due to wire－ 1
$\vec{B}_{2}=\vec{B}$ due to wire -2
In magnitudes $B_{1}=B_{2}=\frac{\mu_{0} I}{2 \pi r}$
Resultant of B_{1} and $B_{2}=2 B_{1} \cos \theta=\frac{\mu_{0} I a}{\pi r^{2}}$
$\mathrm{B}_{\mathrm{R}}=\frac{2 \mu_{0} \mathrm{I} \pi \mathrm{a}^{2}}{4 \pi \mathrm{r}^{3}}$
For zero magnetic field at P

$$
\begin{aligned}
& \frac{\mu_{0} \mathrm{Ia}}{\pi \mathrm{r}^{2}}=\frac{2 \mu \mathrm{OI} \pi \mathrm{a}^{2}}{4 \pi \mathrm{r}^{3}} \\
& \Rightarrow \mathrm{~h} \approx 1.2 \mathrm{a}
\end{aligned}
$$

Q． 11 （B）
Magnetic field at mid point of two wires $=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{d}} \otimes$
Magnetic moment of loop $=\mathrm{I} \pi \mathrm{a}^{2}$
Torque on loop $=M B \sin 150^{\circ}=\frac{\mu_{0} I^{2} a^{2}}{2 d}$
Q． 12 （B）
（P）$\bigcup \frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{r}+\frac{1}{r}\right)=\frac{1}{r} \Rightarrow f=r s$

$$
⿹ 勹 冫 \frac{1}{f_{e q}}=\frac{1}{f}+\frac{1}{f}=\frac{2}{r} \Rightarrow f_{e q}=\frac{r}{2}
$$

（Q） $\int \frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{r}\right) \Rightarrow f=2 r$

$$
\mathcal{V} \Rightarrow \frac{1}{f}+\frac{1}{f}=\frac{2}{f}=\frac{1}{r} \Rightarrow f_{e q}=r
$$

（R）$\square \frac{1}{f}=\left(\frac{3}{2}-1\right)\left(-\frac{1}{r}\right)=-\frac{1}{2 r} f=-2 r$

$$
\square \bigsqcup \Rightarrow \frac{1}{\mathrm{f}_{\mathrm{eq}}}=\frac{1}{\mathrm{f}}+\frac{1}{\mathrm{f}}=-\frac{2}{2 \mathrm{r}} \Rightarrow \mathrm{f}_{\mathrm{eq}}=-\mathrm{r}
$$

（S）$\ \int \Rightarrow \frac{1}{f_{e q}}=\frac{1}{r}+\frac{1}{-2 r}=\frac{1}{2 r} \Rightarrow f_{e q}=2 r$
（B） $\mathrm{P}-2 \mathrm{Q}-4 \mathrm{R}-3 \mathrm{~S}-1$

Q． 13 （A）

Applying snell＇s law at $P Q$
$1 \times \sin 45^{\circ}=\sqrt{2} \times \sin r$
$\Rightarrow r=30^{\circ}$
At surface $P R$
$\sin c=\frac{1}{\mu}=\frac{1}{\sqrt{2}}$

$\Rightarrow c=45^{0}$
$c+\theta^{\prime}=90^{\circ}$
$\Rightarrow \theta^{\prime}=45^{0}$
In＂PAB，
$\theta+120^{\circ}+45^{0}=180^{0}$
$\Rightarrow \theta=15^{0}$
Hence，（A）
（B，C，D）
For parallel interfaces between media，snell＇s law can be applied for two different points．
Hence，（b，c，d）

Q. 15 (A,D)

convex mirror forms virtual image for real object
$\therefore \frac{1}{+10}+\frac{1}{-30}=\frac{2}{R}$

$$
\mathrm{R}=30 \mathrm{~cm}
$$

For image formed by lens,
$\pm 2=\frac{f}{f-30}$
$\Rightarrow f=20$ Or 60
Now, $\frac{1}{f}=(\mu-1)\left(\frac{1}{R}-\frac{1}{\infty}\right)$

$$
\begin{aligned}
& \mu=\frac{f}{R}+1 \\
& =2.5 \text { Or } 1.5
\end{aligned}
$$

Hence, (a, d)
Q. 16 (A)

For lens,
$\frac{1}{v}-\frac{1}{50}=\frac{1}{30}$

$$
\Rightarrow v=75 \mathrm{~cm}
$$

For mirror,
$\frac{1}{v}+\frac{1}{(75-50)}=\frac{1}{50} \quad \Rightarrow v=-50$ (At origin)
As mirror is rotated by 30°, reflected rays will rotate by 60°.
Hence, (A)
Q. 17 (A, C, D)
$\delta_{m}=(2 i)-A$
$\Rightarrow 2 \mathrm{~A}=2 \mathrm{i}$
$\Rightarrow \mathrm{i}=\mathrm{A}$ and $\mathrm{r}=\mathrm{A} / 2$ (look solution at right side)

$$
\mu=\frac{\sin \left[\frac{\mathrm{A}+\mathrm{A}}{2}\right]}{\sin \left[\frac{\mathrm{A}}{2}\right]}=\frac{2 \sin \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~A}}{2}}{\sin \frac{\mathrm{~A}}{2}}
$$

$$
\mu=2 \cos \frac{A}{2}
$$

$1 \sin i_{1}=\mu \times \sin \left(A-\theta_{C}\right)$
$=2 \cos \frac{A}{2}\left[\sin A \cos \theta_{C}-\cos A \sin \theta_{C}\right]$
$=2 \cos \frac{A}{2}\left[\sin A \sqrt{1-\sin ^{2} \theta_{C}}-\cos A \frac{1}{\mu}\right]$
$=2 \cos \frac{A}{2}\left[\sin A \sqrt{1-\frac{1}{\mu^{2}}}-\frac{\cos A}{\left(2 \cos \frac{A}{2}\right)}\right]$

$$
=2 \cos \frac{A}{2}\left[\sin A \sqrt{1-\frac{1}{4 \cos ^{2} \frac{A}{2}}}-\frac{\cos A}{2 \cos \frac{A}{2}}\right]
$$

$i_{1}=\sin ^{-1}\left[\sin A \sqrt{4 \cos ^{2} \frac{A}{2}-1}-\cos \mathrm{A}\right]$
$r_{1}=\frac{A}{2}$ for minimum deviation.

$$
\frac{A}{2}=\cos ^{-1}\left[\frac{\mu}{2}\right] \Rightarrow A=2 \cos ^{-1}\left[\frac{\mu}{2}\right]
$$

Calculation of r for $i=A$

$1 \sin \mathrm{~A}=\mu \sin \mathrm{r}$

$$
\sin \mathrm{A}=2 \cos \frac{\mathrm{~A}}{2} \cdot \sin \mathrm{r}
$$

$$
\sin r=\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \cos \frac{A}{2}}=\sin \frac{A}{2} \Rightarrow r=\frac{A}{2}
$$

Q. 18 [8]

Considering Snell's law between first layer and $\mathrm{m}^{\text {th }}$ layer.
$n \sin \theta=(n-m \Delta n) \sin 90^{\circ}$
$1.6 \times \frac{1}{2}=(1.6-\mathrm{n}(0.1)) 1$
$\mathrm{m}=\frac{0.8}{0.1}=8$
Q. 19 [130]

$\frac{\mathrm{r}}{\mathrm{R}}=\frac{2}{20}=\frac{1}{10}$
\therefore Ratio of area $=\frac{1}{100}$
Let energy incident on lens be E.
\therefore Given $\frac{\mathrm{E}}{\mathrm{A}}=1.3$
So final, $\frac{E}{a}=$??
$\mathrm{E}=\mathrm{A} \times 1.30$
Also $\frac{\mathrm{a}}{\mathrm{A}}=\frac{1}{100}$
\therefore Average intensity of light at $22 \mathrm{~cm}=\frac{\mathrm{E}}{\mathrm{a}}=\frac{\mathrm{A} \times 1.3}{\mathrm{a}}$ $=100 \times 1.3=130 \mathrm{~kW} / \mathrm{m}^{2}$

Q. 20 (D)

Distance of point A is $f / 2$
Let A^{\prime} is the image of A from mirror, for this image
$\frac{1}{\mathrm{v}}+\frac{1}{-\mathrm{f} / 2}=\frac{1}{-\mathrm{f}}$
$\frac{1}{v}=\frac{2}{f}-\frac{1}{f}=\frac{1}{f}$
image of line $A B$ should be perpendicular to the principle axis and image of F will form at infinity, therefore correct image diagram is

$\frac{f}{f-u}=\frac{h_{2}}{h_{1}}$
$h_{2}=\frac{-f(f-x)}{-f+x}$
$\mathrm{h}_{2}=\mathrm{f}$

$\frac{f}{f-u}=\frac{h_{2}}{h_{1}}$
$h_{2}=\frac{-f(f-x)}{-f+x}$
$h_{2}=f$
Q. 21 (A,C,D)

When $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$
$\frac{1}{\mathrm{f}}=(\mathrm{n}-1) \times \frac{2}{\mathrm{R}}$
So $\mathrm{f}=\frac{\mathrm{R}}{2(\mathrm{n}-1)}$
$2^{\text {nd }}$ case :
$\frac{1}{\mathrm{f}_{1}}=\frac{\mathrm{n}-1}{\mathrm{R}}$
$\frac{1}{\mathrm{f}_{2}}=\frac{(\mathrm{n}+\Delta \mathrm{n})-1}{\mathrm{R}}$

$\frac{1}{f_{e q}}=\frac{1}{f+\Delta f}=\left(\frac{\mathrm{n}-1}{\mathrm{R}}\right)+\frac{(\mathrm{n}+\Delta \mathrm{n})-1}{\mathrm{R}}=\frac{2(\mathrm{n}-1)+\Delta \mathrm{n}}{\mathrm{R}}$
$\Delta f=\left(\frac{\mathrm{R}}{2(\mathrm{n}-1)+\Delta \mathrm{n}}\right)-\left(\frac{\mathrm{R}}{2(\mathrm{n}-1)}\right)$

$=\frac{\mathrm{R}}{2}\left[\frac{(\mathrm{n}-1)-(\mathrm{n}-1+\Delta \mathrm{n})}{(\mathrm{n}-1+\Delta \mathrm{n})(\mathrm{n}-1)}\right]=\frac{-\Delta \mathrm{n}}{(\mathrm{n}-1)} \times \frac{\mathrm{R}}{2}$
$\frac{\Delta \mathrm{f}}{\mathrm{f}}=-\frac{\Delta \mathrm{n}}{2(\mathrm{n}-1)}$
(1) Relation beteeen $\frac{\Delta f}{f}$ and $\frac{\Delta n}{n}$ is independent of

R so (1) is correct.
(2) $2 \mathrm{n}-2<\mathrm{n}$ because $\mathrm{n}<2$
$\Rightarrow \frac{\Delta \mathrm{f}}{\mathrm{f}}=\frac{1}{2}\left|\frac{\Delta \mathrm{n}}{\mathrm{n}-1}\right|>\frac{\Delta \mathrm{n}}{\mathrm{n}} \quad$ So $\frac{\Delta \mathrm{f}}{\mathrm{f}}>\left|\frac{\Delta \mathrm{n}}{\mathrm{n}}\right|$ So (2) wrong
(3) $|\Delta \mathrm{f}|=\frac{\mathrm{f} \Delta \mathrm{n}}{(\mathrm{n}-1)}=\frac{\left(20 \times 10^{-2}\right)}{1.5-1}=40 \times 10^{-3}=0.04$ So
(3) is wrong
(4) If $\frac{\Delta \mathrm{n}}{\mathrm{n}}<0$ then $\frac{\Delta \mathrm{f}}{\mathrm{f}}>0$ from equation (2)
Q. 22 [50.00]

For maximum time the ray of light must undergo TIR at all surfaces at minimum angle i.e. θ_{C}

For TIR $n_{1} \sin \theta_{C}=n_{2}$
$\operatorname{Sin} \theta_{C}=\frac{1.44}{1.5}$
In above $\Delta \sin \theta_{C}=\frac{x}{d}$
$d=\frac{x}{\sin \theta_{C}}$
Similarly $D=\frac{L}{\sin \theta_{C}}$
where $\mathrm{L}=$ length of tube, $\mathrm{D}=$ length of path of light Time taken by light
$\mathrm{t}=\frac{\mathrm{D}}{\mathrm{C}}=\frac{\mathrm{L} / \sin \theta_{\mathrm{C}}}{2 \times 10^{8}}$
$\mathrm{t}=50 \times 10^{-9} \mathrm{~s}$
Q. 23 (C,D)
$\mathrm{H}_{1}=\frac{2 \mathrm{H}}{3}=\frac{2}{3} \times \frac{3}{10}=\frac{1}{5} \mathrm{~m}$
for $2^{\text {nd }}$
$\frac{1}{v}+\frac{3}{2 H}=\frac{-1}{2(-3)}$
$\frac{1}{v}=\frac{1}{6}-\frac{10}{2}=\frac{1}{6}-\frac{30}{6}=\frac{-29}{6}$
$\mathrm{H}_{2}=\frac{6}{29}>\mathrm{H} 1$
For $3^{\text {rd }}$
$\frac{1}{v}+\frac{3}{2 H}=\frac{-1}{2(3)}$
$\frac{1}{\mathrm{v}}=\frac{-1}{6}-5=\frac{-31}{6}$
$H_{3}=\frac{6}{31}$
so $\mathrm{H}_{3}<\mathrm{H}_{1}<\mathrm{H}_{2} \&\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)$
$=\frac{6}{29}-\frac{6}{31}=0.68 \mathrm{~cm}$
Q. 24 [1.50]

At $\theta=60^{\circ}$ ray incidents at critical angle at second surface $\operatorname{So}, \sin \theta=\sqrt{3} \sin r_{1}$

$\frac{\sqrt{3}}{2}=\sqrt{3} \sin r_{1}$
$\mathrm{r}_{1}=30^{\circ}$
$\mathrm{r}_{2}=45^{\circ}=\mathrm{C}$
$\sqrt{3} \sin 45^{\circ}=n \sin 90^{\circ}$
$\mathrm{n}=\frac{\sqrt{3}}{2} \Rightarrow \mathrm{n}^{2}=\frac{3}{2}$
Q. 25
[0.69]
For the given lens
$\mathrm{u}=-30 \mathrm{~cm}$
$\mathrm{v}=60 \mathrm{~cm}$
$\& \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}$ on solving : $\mathrm{f}=20 \mathrm{~cm}$
also $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}$
on differentiation
$\frac{\mathrm{df}}{\mathrm{f}^{2}}=\frac{\mathrm{dv}}{\mathrm{v}^{2}}+\frac{\mathrm{du}}{\mathrm{u}^{2}}$
$\frac{\mathrm{df}}{\mathrm{f}^{2}}=\mathrm{f}\left[\frac{\mathrm{d} v}{\mathrm{v}^{2}}+\frac{\mathrm{du}}{\mathrm{u}^{2}}\right]$
$\& \frac{d f}{f} \times 100=f\left[\frac{d v}{v^{2}}+\frac{d u}{u^{2}}\right] \times 100 \%$
$\mathrm{f}=20 \mathrm{~cm}, \mathrm{du}=\mathrm{dv}=\frac{1}{4} \mathrm{~cm}$
Since there are 4 divisions in 1 cm on scale
$\therefore \frac{\mathrm{df}}{\mathrm{f}} \times 100=20\left[\frac{1 / 4}{(60)^{2}}+\frac{1 / 4}{(30)^{2}}\right] \times 100 \%$
$=5\left[\frac{1}{3600}+\frac{1}{900}\right] \times 100 \%$
$=5\left[\frac{5}{36}\right] \%=\frac{25}{36} \% \approx 0.69 \%$
Q. 26 (B)
Q. 27 (BCD)
Q. 28 (BC)

Wave Optics

EXERCISES

ELEMENTRY

Q. 1
(2)
Q. 2 (3)

Huygen's wave theory fails to explain the particle nature of light (i.e. photoelectric effect)

Q. 3 (3)

$I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=(\sqrt{\mathrm{I}}+\sqrt{4 \mathrm{I}})^{2}=9 \mathrm{I}$
$I_{\text {min }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=(\sqrt{I}+\sqrt{4 \mathrm{I}})^{2}=I$
Q. 4 (4)
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{25}, \therefore \frac{\mathrm{a}_{1}^{2}}{\mathrm{a}_{2}^{2}}=\frac{1}{25} \Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{5}$
Q. 5 (3)
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{5}$.
$\therefore \frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\frac{\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right)^{2}}{\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)^{2}}=\frac{(3+5)^{2}}{(3-5)^{2}}=\frac{16}{1}$

Q. 6 (3)

For constructive interference path difference is even multiple of $\frac{\lambda}{2}$.
Q. 7 (1)
$I \propto a^{2}$
I $\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\left(\frac{4}{1}\right)^{1 / 2}=\frac{2}{1}$

Q. 8 (3)

$\mathrm{I} \propto \mathrm{a}^{2}$
$1 \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}\right)^{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$
Q. 9 (2)
$\phi=\pi / 3, \mathrm{a}_{1}=4, \mathrm{a}_{2}=31$
So, $A=\sqrt{a_{1}^{2}+a_{2}^{2}+2 a_{1} \cdot a_{2} \cos \phi} \Rightarrow A \approx 6$

Q. 10 (4)

Diffraction shows the wave nature of light and photoelectric effect shows particle nature of light.

Q. 11 (3)

For brightness, path difference
So second is bright.
Q. 12 (3)

$$
\beta=\frac{\lambda \mathrm{D}}{\mathrm{~d}}=\frac{5000 \times 10^{-10} \times 1}{0.1 \times 10^{-3}} \mathrm{~m}=5 \times 10^{-3} \mathrm{~m}=0.5 \mathrm{~cm}
$$

Q. 13 (2)

If intensity of each wave is I, then initially at central position $I_{0}=4 \mathrm{I}$. when one of the slit is covered then intensity at central position will be I only i.e., $\frac{\mathrm{I}_{0}}{4}$.

Q. 14 (2)

Q. 15 (1)

When white light is used, central fringe will be white with red edges, and on either side of it, we shall get few coloured bands and then uniform illumination.
Q. 16 (2)
Q. 17 (4)

In the presence of thin glass plate, the fringe pattern shifts, but no change in fringe width.
Q. 18 (2)
Q. 19 (1)

According to given condition
$(\mu-1) \mathrm{t}=\mathrm{n} \lambda \mathrm{t}, \mathrm{n}=1$

$$
\text { So, }(\mu-1) \mathrm{t}_{\min }=\lambda
$$

$$
\mathrm{t}_{\min }=\frac{\lambda}{\mu-1}=\frac{\lambda}{1.5-1}=2 \lambda
$$

Q. 20 (2)

Diffraction is obtained when the slit width is of the order of wavelength of EM waves (or light). Here wavelength of X-rays ($1-100 \AA$) is very-very lesser than slit width $(0.6 \mathrm{~mm})$. Therefore no diffraction pattern will be observed.
Q. 21 (2)

Polariser produced prolarised light.
Q. 22 (3)

If an unpolarised light is converted into plane polarised light by passing through a polaroid, it's intensity becomes half.

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (1)
we know $\mathrm{I} \alpha \mathrm{A}^{2}$.

$$
\Rightarrow \frac{I_{1}}{I_{2}}=\frac{A_{1}^{2}}{A_{2}^{2}} \quad \Rightarrow \sqrt{\frac{4}{1}}=\frac{A_{1}}{A_{2}} \Rightarrow A_{1}: A_{2}=2: 1
$$

Q. 2 (3)
$I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=(\sqrt{4 \mathrm{I}}+\sqrt{\mathrm{I}})^{2}=9 \mathrm{I}$.
$I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}=(\sqrt{4 \mathrm{I}}-\sqrt{\mathrm{I}})^{2}=\mathrm{I}$.
Q. 3 (3)

Contrast indicates the ratio of maximum possible intensity on screen to the minimum possible intensity.

As $\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}$
so it only depends on the source intensity.
Q. 4 (2)

Given $\mathrm{y}_{1}=\mathrm{A}_{1} \sin \mathrm{wt}, \mathrm{f}_{1}=0$
$y_{2}=A_{2} \cos (w t+f)=A_{2} \sin \left(\frac{\pi}{2}+\omega t+\phi\right)$
$\mathrm{f}_{2}=\frac{\pi}{2}+\mathrm{f}$
$\Delta \mathrm{f}=\mathrm{f}_{2}-\mathrm{f}_{1}$
$\Delta \phi=\frac{\pi}{2}+\phi \Rightarrow \Delta \phi=\Delta \phi\left(\frac{\lambda}{2 \pi}\right)$
$\Delta x=\frac{\lambda}{2 \pi} \times \Delta f$
$\Delta x=\frac{\lambda}{2 \pi}\left(\frac{\pi}{2}+\phi\right)$
Q. 5 (3)

Amplitude depends upon intensity and phase difference.
Q. 6 (4)

In interferene there should be two coherent sources and propagation of waves should be simultaneously and in same direction.
Q. 7 (3)

In transverse and longitudinal waves.
Q. 8 (2)

Wave nature
Q. 9 (2)

Principle of Superposition.
Q. 10 (2)
$\mathrm{y}_{1}=\mathrm{A}_{1} \sin 3 \omega \mathrm{t}, \mathrm{f}_{1}=0$
$y_{2}=A_{2} \cos \left(3 \omega t+\frac{\pi}{6}\right)$
$y_{2}=A_{2} \sin \left(\frac{\pi}{2}+3 \omega t+\frac{\pi}{6}\right), f_{2}=\frac{\pi}{2}+\frac{\pi}{6}$
Df $=f_{2}-f_{1}$
$\Delta \phi=\frac{\pi}{2}+\frac{\pi}{6}=\frac{3 \pi+\pi}{6}=\frac{4 \pi}{6}=\frac{2 \pi}{3}$
Q. 11 (2)

Given $\mathrm{I}_{1}: \mathrm{I}_{2}=100: 1$
$\frac{\sqrt{I_{1}}}{\sqrt{I_{2}}}=10: 1$
$I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=(10+1)^{2}=121$
$\mathrm{I}_{\text {min }}=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}=(10-1)^{2}=81$
$\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=121: 81$
Q. 12 (4)

In coherent sources initial phase remains constant.
Q. 13 (2) Phase difference changes with time.
Q. 14 (1)

Q. 15 (3)

Frequency remains constant wave length decreases.
Q. 16 (2)

$$
\Delta \mathrm{x}=\mathrm{n} \lambda \quad \text { (maxima) }
$$

Q. 17 (1)

$$
\frac{13 \lambda}{2}=0.13
$$

$\Rightarrow \mathrm{f}=\frac{3 \times 10^{8} \times 100}{2}=1.5 \times 10^{10} \mathrm{~Hz}$

Q. 18 (1)

we know that $\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}} \& \lambda_{\text {yellow }}>\lambda_{\text {blue }}$.
\Rightarrow as λ decreases, so β also decreases.
Q. 19 (2)

As $\lambda \ll \mathrm{d}$; we can we

$$
\beta=\frac{\lambda D}{d}
$$

we get $\beta=\frac{500 \times 10^{-9} \times 1}{10^{-3}}=0.5 \mathrm{~mm}$.
As β is not very small; hence it might so happen that till $1000^{\text {th }}$ maxima, we no longer can apply $y^{\prime}=1000 \times \beta$.
Lets see if we can apply:
At $1000^{\text {th }}$ maxima. Path difference is 1000λ.
$\Rightarrow 1000 \lambda=\mathrm{d} \sin \theta=\frac{\mathrm{d} \times \mathrm{y}}{\sqrt{\mathrm{D}^{2}+\mathrm{y}^{2}}}$
$\Rightarrow\left(5 \times 10^{-4}\right)^{2}=\frac{\left(10^{-3} \mathrm{~m}\right)^{2} \times \mathrm{y}^{2}}{\mathrm{D}^{2}+\mathrm{y}^{2}}$
$\Rightarrow 0.25 \mathrm{D}^{2}=\mathrm{y}^{2}(1-0.25) \Rightarrow \mathrm{y}=\left(\frac{0.25}{0.75}\right)^{\frac{1}{2}} \times \mathrm{D}$
$y=\frac{D}{\sqrt{3}}=0.577 \mathrm{~m}$.
As 0.577 m . and 0.5 m . are quite distant, so we could not use $y^{\prime}=1000 \beta$ for such a high maxima.
Q. 20 (2)
$\Delta \phi=\frac{2 \pi}{\lambda} \Delta x$
$\Delta \phi=\frac{2 \pi}{5460 \times 10^{-10}} \frac{1 \times 10^{-6}}{10}=7.692 \pi$
Q. 21 (1)

In monochromatic light, only one wave length is present.
Q. 22 (4)

Lets look at the screen.

as we know that 75% intensity will correspond to a point where intensity is $3 \mathrm{I}_{0}$.

$$
\left\{\because I_{\max }=4 \mathrm{I}_{0}\right\}
$$

$\mathrm{I}=\mathrm{I}_{0}+\mathrm{I}_{0}+2 \sqrt{\mathrm{I}_{0}} \sqrt{\mathrm{I}_{0}} \cos (\Delta \phi)$
$3 \mathrm{I}_{0}=2 \mathrm{I}_{0}(1+\cos \Delta \phi)$
$\cos (\Delta \phi)=\frac{1}{2}$
$\Delta \phi=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}, 2 \pi+\frac{\pi}{3}$,
$\Delta \mathrm{p}=\frac{\lambda}{6}, \lambda-\frac{\lambda}{6}, \lambda+\frac{\lambda}{6}, \ldots \ldots \ldots \ldots$
$\Delta \mathrm{p}=\frac{\mathrm{yd}}{\mathrm{D}}$

$\frac{\mathrm{yd}}{\mathrm{D}}=\frac{\lambda}{6} \Rightarrow \mathrm{y}=\frac{\mathrm{D}}{\mathrm{d}} \times \frac{\lambda}{6}, \ldots \ldots .$.
$y=\frac{\beta}{6}, \beta-\frac{\beta}{6}, \beta+\frac{\beta}{6}$
$y=\frac{\lambda}{6} \times \frac{D}{d}=\frac{6000 \times 10^{-10} \times 1}{3 \times 10^{-3}}=0.2 \mathrm{~mm}$
Q. 23 (3)

Lets take any general point S on the line $A B$.

Clearly: for any position of S on line $A B$; we have for Δ PQS:
PQ + QS > PS
\{in any triangle sum of
2 sides is more then the third side $\}$
$\Rightarrow \mathrm{PS}-\mathrm{QS}<3 \lambda$.
As PS - QS represents the path difference at any point on $\mathrm{AB} \Rightarrow$ it can never be more than 3λ. Now minimas occur at.
$\frac{\lambda}{2}, \frac{3 \lambda}{2}, \frac{5 \lambda}{2}$ only.
so 3 minimas below R (mid point of $A B$) and 3 also above R.
Q. 24 (2)
$62=\frac{y}{\frac{\lambda_{1} D}{d}} \quad \Rightarrow y=\frac{62 \lambda_{1} D}{d}$
$\frac{x \lambda_{2} D}{d}=\frac{62 \lambda_{1} D}{d} \Rightarrow 4=\frac{62 \times 5893}{5461}=67$
Q. 25 (3)
$\Delta x=(24-1) \frac{\lambda}{2}=\frac{d y}{D}$
$y=(2 x-1) \frac{D \lambda}{2 d}$
Q. 26 (3)
$\beta=\frac{\lambda D}{d}$
$\lambda \downarrow \beta \downarrow$
Q. 27 (2)
$\beta=\frac{\lambda D}{d}$
Q. 28 (1)
$\beta=x=\frac{\lambda D}{d} \quad D=$
$\lambda=\frac{x d}{L}$
Q. 29 (2)

$$
2\left[\frac{d}{\lambda}\right]+1=7
$$

Q. 30 (3)
$4 \mathrm{I}_{0}=\mathrm{I}$ $\mathrm{I}_{0}=\mathrm{I} / 4$

Q. 31 (3)

$I^{\prime}=4 I \cos ^{2} \frac{\Delta \phi}{2}$
$\Rightarrow \cos ^{2} \frac{\Delta \phi}{2}=\frac{1}{4} \Rightarrow \cos \frac{\Delta \phi}{2}= \pm \frac{1}{2}$
$\Rightarrow \Delta \phi=\frac{2 x}{\lambda} \frac{d y}{D} \Rightarrow \cos \frac{\pi \cdot d y}{\lambda D}=+\frac{1}{2}$
$\Rightarrow \frac{\pi \cdot d y}{\lambda D}=\frac{\pi}{3} \Rightarrow y=\frac{\lambda D}{3 d}$
Q. 32 (1)
$\Delta \phi=\frac{\text { d. } y}{\mathrm{D}} \times \frac{2 \pi}{\lambda}$
$\because y=\frac{\lambda D}{d} \times \frac{1}{4}$
$\therefore \Delta \phi=\frac{\pi}{2} \quad \Rightarrow I^{\prime}=4 I \cos ^{2} \frac{\Delta \phi}{2}=2 I$
Q. 33 (3)

As the $\mathrm{D} \uparrow$ position of first maxima
i.e., $\mathrm{y} \uparrow\left(\frac{\lambda \mathrm{D}}{\mathrm{d}}\right)$
\Rightarrow First decrease then increase.
Q. 34 (3)
$\mathrm{I}_{0}=4 \mathrm{I}$
Intensity due to one
$\Delta \phi=\frac{\mathrm{d} . \mathrm{y}}{\mathrm{D}} \times \frac{2 \pi}{\lambda}$
$=\frac{0.25 \times 10^{-2} \times 4 \times 10^{-5}}{100 \times 10^{-2}} \times \frac{2 \pi}{6000 \times 10^{-10}}$
$\Delta \phi=\pi / 3$
$I^{\prime}=I_{0} \cos ^{2} \frac{\frac{\pi}{3}}{2}=\frac{3 I_{0}}{4}$
Q. 35 (3)

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{D}} \times \frac{2 \pi}{\lambda}=\Delta \phi \\
& \Rightarrow 2 \mathrm{I}=4 \mathrm{I} \cos ^{2} \frac{\Delta \phi}{2} \Rightarrow \cos \frac{\Delta \phi}{2}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \frac{\Delta \phi}{2}=\frac{\pi}{4} \Rightarrow \frac{\mathrm{~d} \cdot \mathrm{y}}{\mathrm{D}} \cdot \frac{2 \pi}{\lambda}=\frac{\pi}{2} \\
& \Rightarrow \frac{1 \times 10^{-3} \times \mathrm{y}}{1 \times 500 \times 10^{-1}}=\frac{1}{4} \Rightarrow y=1.25 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

Q. 36 (3)

$$
\begin{aligned}
& 0.3 \times 10^{-3} \times \sin 30^{\circ}=\mathrm{n} \times 500 \times 10^{-9} \Rightarrow \mathrm{n}=300 \\
& \therefore \quad 299+299+1=599
\end{aligned}
$$

Q. 37 (1)

$$
\frac{\mathrm{d} . \mathrm{d}}{6 \mathrm{D}}=\mathrm{n} \lambda
$$

$$
\Rightarrow \lambda=\frac{\mathrm{d}^{2}}{6 \mathrm{nD}}[\mathrm{n}=1,2,3 \ldots . .]
$$

Q. 38 (2)

$\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}=\mathrm{n} \lambda=$ const.
\Rightarrow equation of hyperbola
Q. 39 (2)

For strong reflection.

$$
\begin{aligned}
& 2 \mu \mathrm{t}=\frac{\lambda}{2}, \frac{3 \lambda}{2}, \frac{5 \lambda}{2} \ldots \ldots \\
\Rightarrow & \lambda=4 \mu \mathrm{t}, \frac{4 \mu \mathrm{t}}{3}, \frac{4 \mu \mathrm{t}}{5}, \frac{4 \mu \mathrm{t}}{7} \ldots \ldots \\
\Rightarrow & 3000 \mathrm{~nm} .1000 \mathrm{~nm}, 600 \mathrm{~nm}, 430 \mathrm{~nm}, 333 \mathrm{~nm} . \\
\Rightarrow & \text { only option is } 600 \mathrm{~nm} .
\end{aligned}
$$

Q. 40 (2)

$$
\begin{aligned}
& \frac{\mathrm{n} \lambda_{R} D}{\mathrm{~d}}=(\mathrm{n}+1) \frac{\lambda_{B} \mathrm{D}}{\mathrm{~d}} \\
& \Rightarrow \mathrm{n} .7800=(\mathrm{n}+1) 5200 \\
& \Rightarrow \mathrm{n}=2 .
\end{aligned}
$$

Q. 41 (4)
$4 \times 6300=(4.5) \lambda$
$\lambda=\frac{4 \times 6300}{9} \times 2=5600 \AA$

Q. 42 (4)

we know that P will be the central maxima (at which path difference is zero)

Now $O P=\frac{d}{2}-\frac{d}{3}=\frac{d}{6}$

Q. 43 (3)

Fourth maxima will be at $\mathrm{y}=4 \beta$.
$\Rightarrow y=\frac{4 \lambda D}{d}$
as $\lambda_{\text {Green }}>\lambda_{\text {blue }}$.
$\Rightarrow \beta_{\text {Green }}>\beta_{\text {blue }}$
$\Rightarrow X_{\text {Green }}>X_{\text {blue }}$
Also get $\frac{X(\text { blue })}{X(\text { green })}=\frac{4360}{5460}$

Q. 44 (4)

$\mathrm{D}=\mathrm{By}$ using white light instead of single wavelength light.

Q. 45 (1)

Clearly the central maxima at P (initially) shifts to P ' where PP' $=5 \mathrm{~mm}$.
So now, path difference at P^{\prime} must be zero.

$$
\begin{aligned}
& \Rightarrow \mathrm{d} \sin \theta=(\mu-1) \mathrm{t} \\
& \Rightarrow \mathrm{~d} \tan \theta=(\mu-1) \mathrm{t} \\
& \mu=1+\frac{\mathrm{d} .(\mathrm{PP})}{\mathrm{Dt}} ; \text { get } \mu=1.2
\end{aligned}
$$

Q. 46 (4)

As we know, at the point of 75% intensity

$$
\begin{aligned}
& \cos \phi=\frac{1}{2} \\
\Rightarrow & \frac{2 \pi}{\lambda} \times \Delta \mathrm{P}=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}, \frac{13 \pi}{3} \\
\Rightarrow & (\mu-1) \mathrm{t}=\frac{\lambda}{6}, \frac{5 \lambda}{6}, \frac{7 \lambda}{6}, \frac{11 \lambda}{6}, \frac{13 \lambda}{6} \\
\Rightarrow & \mathrm{t}=\frac{\lambda}{6(\mu-1)}, \frac{5 \lambda}{6(\mu-1)}, \frac{7 \lambda}{6(\mu-1)}, \frac{11 \lambda}{6(\mu-1)}, \frac{13 \lambda}{6(\mu-1)} \\
& =0.2 \mu \mathrm{~m} ; 1 \mu \mathrm{~m}, 1.4 \mu \mathrm{~m}, 2.6 \mu \mathrm{~m} . \ldots . . .
\end{aligned}
$$

Hence only $1.6 \mu \mathrm{~m}$ is not possible.

Q. 47 (4)

$\beta=\frac{\lambda D}{d}$
In water $\lambda \downarrow$ so $\beta \downarrow$
Q. 48 (1)
$\Delta \phi=\frac{2 \pi}{\lambda / \mu} \cdot \mathrm{x}=\frac{2 \pi \mu \mathrm{X}}{\lambda}$
Q. 49 (3)
$2 \mathrm{I}=4 \mathrm{I} \cos ^{2} \frac{\Delta \phi}{2} \Rightarrow \cos \frac{\Delta \phi}{2}=\frac{1}{\sqrt{2}} \Rightarrow \frac{\Delta \phi}{2}=\frac{\pi}{4}$

$$
\Rightarrow \frac{2 \pi}{\lambda} \times \frac{\left(\frac{3}{2}-1\right) \mathrm{t}}{2}=\frac{\pi}{4} \Rightarrow \mathrm{t}=\lambda / 2
$$

Q. 50 (2)

$$
\begin{aligned}
& |(2 \mu-1) t-(\mu-1) \cdot 2 t|=\frac{d \cdot y}{D} \\
& t=\frac{d \cdot y}{D} \Rightarrow y=\frac{t D}{d}
\end{aligned}
$$

Q. 51 (4)

$$
\begin{aligned}
& \Delta \mathrm{x}=(2 \mathrm{n}+1) \frac{\lambda}{2} \\
& \Delta \mathrm{x}=\left(\ell_{1}+\ell_{3}\right)-\left(\ell_{2}+\ell_{4}\right)=(2 \mathrm{n}+1) \frac{\lambda}{2}
\end{aligned}
$$

Q. 52 (4)

$\beta=\frac{\lambda D}{d}=$ remain same.
Q. 53 (2)

$\mathrm{d}=(\mu-1) \mathrm{A} \times 1$
no. of fringes $=\frac{8 d^{2} .2}{\lambda D}$

$$
\begin{aligned}
& =\frac{16 \mathrm{~d}^{2}}{\lambda \mathrm{D}}=\frac{16[(\mu-1) \mathrm{A} .1]^{2}}{6000 \times 10^{-10} \times 5} \mathrm{~s} \\
& =5.33
\end{aligned}
$$

Q. 54 (3)

t changes more rapidly when we go outwards.
\Rightarrow path diff. changes more rapidly
\Rightarrow fringe width \downarrow
$\Delta \phi=\pi+(2 \mu \mathrm{t}) . \frac{2 \pi}{\lambda}$
at top
$\mathrm{t} \rightarrow 0$

$\Delta \phi=\pi$
Minima for all the wave length.
Top position will appear dark.
\Rightarrow As we move down violet Maxima will appear first.
first colour will be violet.
Q. 56 (1)

$$
\begin{aligned}
& 2 \times \frac{4}{3} t=600 \\
& t=225 \mathrm{~nm}
\end{aligned}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1
 (B)

$$
\begin{aligned}
& \frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}-\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}+\left(\sqrt{I_{2}}-\sqrt{I_{2}}\right)^{2}} \\
& =\frac{I_{1}}{I_{1}} \times \frac{\left(1+\sqrt{\frac{I_{2}}{I_{1}}}\right)^{2}-\left(1-\sqrt{\frac{I_{2}}{I_{1}}}\right)^{2}}{\left(1+\sqrt{\frac{I_{2}}{I_{1}}}\right)^{2}+\left(1-\sqrt{\frac{I_{2}}{I_{1}}}\right)^{2}} \\
& =\frac{(1+2)^{2}-(1-2)^{2}}{(1+2)^{2}+(1-2)^{2}}=\frac{8}{10}=\frac{4}{5}
\end{aligned}
$$

Q. 2 (C)

$$
\begin{aligned}
& \sin r=\frac{d}{c} \\
& \sin \mathrm{i}=\frac{\mathrm{b}}{\mathrm{c}} \\
& \Rightarrow i \sin \mathrm{i}=\mathrm{u} \sin \mathrm{r} \\
& \Rightarrow \mu=\frac{\mathrm{b}}{\mathrm{~d}}
\end{aligned}
$$

Q. 3 (A)

Notice that d is not very small than D; so we can not use $\Delta \mathrm{p}=\mathrm{d} \sin \theta$.

$$
\begin{aligned}
& \mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\Delta \mathrm{P}=\frac{\lambda}{2}\{\because \text { first minima }\} \\
\Rightarrow & \sqrt{5^{2}+12^{2}}-(12) \quad=\frac{\lambda}{2} \text { get } \lambda=2 \mathrm{~cm}
\end{aligned}
$$

Q. 4 (B)

As width $\uparrow \Rightarrow \mathrm{I} \uparrow$

$$
\begin{aligned}
\Rightarrow & I_{\min }=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2} \\
\Rightarrow & I_{1} \neq I_{2} \\
& I_{\text {min }} \neq 0
\end{aligned}
$$

Q. 5 (B)

Intensity in first case $=4 I_{0}$
In second case $=4 \mathrm{I}_{0} \cos ^{2} \frac{\Delta \phi}{2}$
\therefore Average $=2 \mathrm{I}_{0} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{4 \mathrm{I}_{0}}{2 \mathrm{I}_{0}}=2: 1$

Q. 6 (D)

Let us say, $\mathrm{n}^{\text {th }}$ minima of 400 nm coincides with $\mathrm{m}^{\text {th }}$ minima of 600 nm .
$\Rightarrow\left(\mathrm{n}+\frac{1}{2}\right) 400 \times \frac{\mathrm{D}}{\mathrm{d}}=\left(\mathrm{m}+\frac{1}{2}\right) .600 \times \frac{\mathrm{D}}{\mathrm{d}}$
$\Rightarrow 400 \mathrm{n}=600 \mathrm{~m}+100$.
$\Rightarrow \mathrm{n}=\frac{6 \mathrm{~m}+1}{4}=($ some integer or non-integer $)+$
0.25

Hence n can never be an integer. So no minima of 600 nm coincides with any minima of 400 nm .
Q. 7 (A)

$$
\begin{aligned}
& \frac{n_{1} \cdot \lambda D}{d}=\frac{n_{2} \lambda_{2} \cdot D}{d} \\
& \Rightarrow n_{1} \times 6500=n_{2} \times 5200 \\
& \Rightarrow n_{1}=4 \\
& n_{2}=5 \\
& \therefore \quad y=\frac{4 \times 6500 \times 10^{-10} \times 120 \times 10^{-2}}{2 \times 10^{-3}} \\
& \quad y=0.156 \mathrm{~cm}
\end{aligned}
$$

Q. 8 (C)

Obviously; for $\mu=1$, O will be a maxima. As μ increases, the intensity will decrease and hence option (C).
Q. 9 (D)

At point P we assume t_{A} provide greater path difff.

$\Rightarrow\left(\mu_{\mathrm{A}}-1\right) \mathrm{t}_{\mathrm{A}}-\left(\mu_{\mathrm{B}}-1\right) \mathrm{t}_{\mathrm{B}}$
$\Rightarrow \mathrm{t}_{\mathrm{B}}-\mathrm{t}_{\mathrm{A}}=\Delta \mathrm{x}$
if $\mathrm{t}_{\mathrm{B}}>\mathrm{t}_{\mathrm{A}} \quad \Delta \mathrm{x}=+\mathrm{ve}$ (shift towards A)
if $\mathrm{t}_{\mathrm{B}}<\mathrm{t}_{\mathrm{A}} \Delta \mathrm{x}=-\mathrm{ve}$ (shift towards B)

Q. 10 (B)

When light passes through a medium of refractive index μ, the optical path it travels is $(\mu \mathrm{t})$.
Therefore, before reaching O light through S_{1} travels $(\mu \mathrm{l}+\mathrm{b})$ distance while that through S_{2} travels a distance $(l+b)$
i.e. : path difference $=(\mu 1+b)-(1+b)=(\mu-1) 1$.

For a small element 'dx' path difference $\Delta x=[(1+$ ax) -1$] d x=a x d x$
For the whole length ;

$\Delta \mathrm{x}=\int_{0}^{\ell} \mathrm{axdx}=\frac{\mathrm{a} \ell^{2}}{2}$
For a minima to be at ' O^{\prime}.
$\Delta \mathrm{x}=(2 \mathrm{n}+1) \frac{\lambda}{2}$
i.e. $: \frac{a \ell^{2}}{2}=(2 n+1) \frac{\lambda}{2}$.

For minimum 'a'; $\mathrm{n}=0$
$\Rightarrow \frac{\mathrm{a} \ell^{2}}{2}=\frac{\lambda}{2} \Rightarrow \mathrm{a}=\frac{\lambda}{\ell^{2}}$ Ans.
Q. 11 (A)
$\left(\frac{\mathrm{n}_{3}}{\mathrm{n}_{2}}-1\right) \mathrm{t} \times \frac{2 \pi}{\lambda_{2}}$
$\therefore \quad \frac{\lambda_{1}}{\lambda_{2}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$

$$
\begin{array}{r}
\Rightarrow\left(\frac{\mathrm{n}_{3}}{\mathrm{n}_{2}}-1\right) \mathrm{t} \times \frac{2 \pi \mathrm{n}_{2}}{\lambda_{1} \mathrm{n}_{1}} \\
\quad=\frac{2 \pi}{\lambda_{1} \mathrm{n}_{1}}\left(\mathrm{n}_{3}-\mathrm{n}_{2}\right) \mathrm{t}
\end{array}
$$

Q. 12 (A)
$0.75 \times 4 \mathrm{I}=4 \mathrm{I} \cos ^{2}\left(\frac{\Delta \phi}{2}\right)$
$\cos \frac{\Delta \phi}{2}= \pm \frac{\sqrt{3}}{2}$
$\frac{\Delta \phi}{2}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6} \ldots \ldots$
$\Delta \phi=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}, \frac{13 \pi}{3}, \frac{17 \pi}{3} \ldots \ldots$.
for third Maxima $\Rightarrow \Delta \phi=6 \pi$
for second Minima $\Rightarrow \Delta \phi=3 \pi$
$\Delta \phi$ must lie between 3π and 6π
$\Rightarrow \Delta \phi=\frac{11 \pi}{3}, \frac{13 \pi}{3}, \frac{17 \pi}{3}$
$\frac{\pi}{3}$ is not lying in the Range.
Q. 13 (A)

At $\mathrm{B} ; \Delta \mathrm{P}=4 \lambda$ (maxima)
At $\mathrm{x}=\infty ; \Delta \mathrm{P}=0$ (maxima)
Hence in between; the point at which path difference is either λ, or 2λ or $3 \lambda \rightarrow$ they will be maximas. Hence 3 maximas.
Q. 14 (B)

The 2 sources are.

As O is a maxima, Hence $\mathrm{OP}=\beta$.
$\Rightarrow \frac{d}{2}=\frac{\lambda . D}{(3 d)} ;$ get $\lambda=\frac{3 d^{2}}{2 D}$
Q. 15 (B)

Point O is a minima Hence the first maxima will be at $y=\frac{\beta}{2}$ from O.
$\Rightarrow y=\frac{\lambda D}{2(2 d)}=\frac{600 \times 10^{-9} \times 1}{4 \times 1 \times 10^{-3}}=0.15 \mathrm{~mm}$.

Q. 16 (C)

QR is the difference between the light reaching at Q and P respectively

for given case $\alpha=\frac{\theta}{2}$

For PQ to be one fringe. the path difference between the interfering light beams will change by ' λ ' while moving from P to Q
\mid path difference at P — path difference at $\mathrm{Q} \mid=\lambda$
$\left|\left(\beta \sin \frac{\theta}{2}-\left(-\beta \sin \frac{\theta}{2}\right)\right)\right|=\lambda$
$\Rightarrow 2 \beta \sin \frac{\theta}{2}=\lambda \beta=\frac{\lambda}{2 \sin (\theta / 2)}$
for near normal incidence $\sin \theta \sim \theta \quad \beta=\frac{\lambda}{\theta}$

Aliter :

$\tan \theta / 2=\frac{\mathrm{d} / 2}{\mathrm{D}}(\because \tan \theta / 2 \simeq \theta / 2)$

$$
\begin{aligned}
\therefore \quad \theta & =\frac{d}{D} \\
\beta & =\frac{\lambda D}{d} \\
\beta & =\frac{\lambda}{\theta}
\end{aligned}
$$

Q. 17 (A)

$$
\begin{aligned}
& (\sqrt{2}-1) d=(1.5-1) t \\
& t=2(\sqrt{2}-1) d
\end{aligned}
$$

Q. 18 (D)

\Rightarrow A, C Bright

$$
\Rightarrow \mathrm{B}, \mathrm{D} \text { Dark }
$$

Q. 19 (A)

$$
\begin{aligned}
& \Rightarrow 3 \mathrm{a}=\mathrm{n} \lambda \Rightarrow \mathrm{n}=15 \\
& \Delta \mathrm{x}=15 \lambda \rightarrow \text { Maxima } \\
& \Rightarrow 14+14+14+14+4=60
\end{aligned}
$$

Q. 20 (D)

$\tan \theta=\frac{x}{D}=\frac{\sqrt{5}}{2}$
Q. 21 (A)
$\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\lambda / 6$
$\therefore \mathrm{SS}_{1} \mathrm{P}-\mathrm{SS}_{2} \mathrm{P}=\lambda / 3$
.....(1)
$\mathrm{SS}_{1} \mathrm{P}-\mathrm{SS}_{3} \mathrm{P}=4 \lambda / 3$
$\Rightarrow \Delta \phi=\frac{2 \pi}{\lambda} \times \frac{4 \lambda}{3}$
(2) - (1)
$\mathrm{SS}_{2} \mathrm{P}-\mathrm{SS}_{3} \mathrm{P}=\lambda$
$\Rightarrow \Delta \phi=\frac{2 \pi}{\lambda} \times \lambda=2 \pi$
Take base $\mathrm{SS}_{3} \mathrm{P}$

$\mathrm{I}_{\text {net }}=(2 \sqrt{\mathrm{I}})^{2}+(\sqrt{\mathrm{I}})+2 \cdot 2 \sqrt{\mathrm{I}} \sqrt{\mathrm{I}} \cos 120^{\circ}$
$I_{\text {net }}=3 I$
Q. 22 (A)

$$
\begin{aligned}
d= & 2 a \delta \\
& =2 a(\mu-1) d \\
& \beta=\frac{\lambda(a+D)}{2 a(\mu-1) \alpha}\left(1+\frac{D}{a}\right) \\
& a \rightarrow \infty \\
\Rightarrow & \beta=\frac{\lambda}{2 \alpha(\mu-1)}
\end{aligned}
$$

Q. 23 (A)

2ut $=\frac{\lambda}{2} \Rightarrow \mathrm{t}=\frac{\lambda}{4}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (B,D)
$=\frac{\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}}{\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}}=\frac{9}{1}$
by checking the options : $I_{1}=4$ unit. $I_{2}=1$ unit. and $\frac{A_{1}}{A_{2}}=\sqrt{\frac{I_{1}}{I_{2}}}=2$.
Q. $2(\mathrm{~B}, \mathrm{C})$

$$
\begin{gathered}
\lambda \downarrow \\
\beta=\underset{d}{\text { Red }} \downarrow \text { Blue } \\
\lambda D
\end{gathered}
$$

Q. $3(\mathrm{~A}, \mathrm{C})$
$\mathrm{I}(\theta)=\mathrm{I}_{0} \cos ^{2} \frac{\phi}{2}\left\{\Delta \phi=\mathrm{d} \sin \theta \frac{2 \pi}{\lambda}\right.$
$I(\theta)=I_{0} \cos ^{2}\left[\frac{150 \times 10^{6}}{3 \times 10^{8}} \times \pi \times \sin \theta\right]$
$\mathrm{I}(\theta)=\mathrm{I}_{0} \cos ^{2}(\sin \theta \cdot \pi / 2)$
at $\theta=30^{\circ} \Rightarrow I(\theta)=I_{0} \cos ^{2}\left(\frac{\pi}{4}\right)=\frac{I_{0}}{2}$
at $\theta=90^{\circ} \Rightarrow I_{0} \cos ^{2} \pi / 2=0$
at $\theta=0$
$\mathrm{I}(\theta)=\mathrm{I}_{0} \cos ^{2} 0=\mathrm{I}_{0}$.
Q. $4(\mathrm{~A}, \mathrm{C})$

Clearly at Q , path difference $=\mathrm{d} \sin \theta$
$\Rightarrow \mathrm{b} \sin \theta \approx \mathrm{b} \tan \theta \approx \frac{\mathrm{b} \cdot \mathrm{y}}{\mathrm{d}}=\frac{\mathrm{b}^{2}}{2 \mathrm{~d}}$
Now whenever $\frac{b^{2}}{2 d}$ will be odd multiple of $\frac{\lambda}{2}$, those λ 's will be having minima at point Q .
$\Rightarrow \frac{\mathrm{b}^{2}}{2 \mathrm{~d}}=\frac{\lambda}{2}, \frac{3 \lambda}{2}, \frac{5 \lambda}{2} \ldots$.
$\Rightarrow \lambda=\frac{\mathrm{b}^{2}}{\mathrm{~d}}, \frac{\mathrm{~b}^{2}}{3 \mathrm{~d}}, \frac{\mathrm{~b}^{2}}{5 \mathrm{~d}} \ldots$.

Q. 5 (B,C,D)

The fringes next to central will be violet and there will not be a complete dark fringe.
Q. 6 (A,C)

Shift $\frac{\text { d.y }}{D}=(\mu-1) t$
for C.M.
$y=(\mu-1)$. t. $\frac{\beta}{\lambda}$
Q. 7 (A,C,D)

A \rightarrow The fringe pattern will get shifted towards covered slit.
$I_{\text {max. }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2} I_{1} \neq I_{2}$ then
$\mathrm{I}_{\text {min. }}=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2} \int \mathrm{I}_{\text {min. }} \uparrow \mathrm{I}_{\text {max. }} \downarrow$
$\beta=\frac{\lambda D}{d}$ (doesn't change)
Q. 8 (C,D)

Path difference at 0

$$
=(\mu-1) \mathrm{t}
$$

$$
=\frac{7 \lambda}{3}
$$

$$
\Delta \phi=\frac{2 \pi}{\lambda} \times \frac{7 \pi}{3}
$$

$=\frac{14 \pi}{3}$
At A. $\Delta \mathrm{x}=(\mu-1) \mathrm{t}-\frac{\mathrm{dy}}{\mathrm{D}}{ }_{\mathrm{D}}=2 \lambda$
$1.05 \mu \mathrm{~m}=9000 \AA+\mathrm{y}_{1} \times 10^{-3}$
$\mathrm{y}_{1}=.15 \mathrm{~mm}$
At B.
$\Delta x=(\mu-1) t+\frac{d y_{2}}{D}=3 \lambda$
$10500 \AA+\frac{1 \times 10^{-3} \times y_{2}}{1}=3 \times 4500 \AA$
$\mathrm{y}_{2}=0.3 \mathrm{~mm}$
Q. 9 (A,C)

As $\mathrm{d} \ll \mathrm{D}, \Rightarrow$ path difference $=\mathrm{d} \sin \theta($ at 0$)=1 \mathrm{~mm}$ $\times \sin 30^{\circ}=0.5 \mathrm{~mm}$
if it is a maxima $\Rightarrow 10^{-3} \times 0.5=\left(5000 \times 10^{-10}\right) \mathrm{m} \times$ (n)
n must be integer. get $\mathrm{n}=1000$.
Hence O is a maxima of intensity $4 I_{0}$

Now path difference at $\mathrm{Q}=\mathrm{d} \sin \theta$ only $\mathrm{QS}_{1} \approx \mathrm{QS}_{2}$. $\mathrm{d} \sin \theta=1 \times 1 / 2=0.5 \mathrm{~mm}=$ integer multiple of λ. Hence maxima.
Q. 10 (A,D)

$$
\begin{aligned}
& \Delta \mathrm{x}=\mu_{2} \frac{2 \lambda_{\text {air }}}{\mu_{2}}+\Delta \mathrm{x}_{1}-\Delta \mathrm{x}_{2} \\
& \Delta \mathrm{x}=2 \lambda_{\text {air }}+\Delta \mathrm{x}_{1}-\Delta \mathrm{x}_{2} \\
& \mu_{3}>\mu_{2}>\mu_{1} \\
& \Rightarrow \Delta \mathrm{x}_{1}=\Delta \mathrm{x}_{2}=\frac{\lambda_{\text {air }}}{2} \\
& \Delta \mathrm{x}=2 \lambda_{\text {air }}=\mathrm{n} \lambda_{\text {air }} \\
& \text { Maxima at Interface (1) } \\
& \Rightarrow \mu_{1}<\mu_{2}>\mu_{3} \\
& \Delta \mathrm{x}_{1}=\frac{\lambda}{2}, \Delta \mathrm{x}_{2}=0 \\
& \Delta \mathrm{x}=2 \lambda_{\text {air }}+\frac{\lambda_{\text {air }}}{2}=(2 \mathrm{n}+1) \frac{\lambda}{2}
\end{aligned}
$$

Minima at (1) interface
Q. 11 (D)

Wave fronts are spherical in shape of radius ct.
Hence (D).

Q. 12 (C)

The wave fronts are always perpendicular to the light rays.
Hence, (C).

Q. 13 (B)

Using snell's law ;

$$
\frac{\sin \left(45^{\circ}\right)}{\sin r}=\frac{\sqrt{2}}{1} \Rightarrow \sin r=\frac{1}{2} \Rightarrow r=30^{\circ}
$$

Hence, (B) is correct.
Note : The shown lines are wavefronts and not rays.

Q. 14 (A)

After reflection by mirror the parallel rays concentrate at the focus.

Hence the plane wave front becomes spherical concentrated at the focus.
Hence, (A).
Q. 15 (A)

In $\Delta \mathrm{ABC} ; \sin (\mathrm{i})=\frac{2}{\mathrm{~d}} \quad$ In $\Delta \mathrm{xyz} ; \sin (\mathrm{r})=\frac{1}{\mathrm{~d}}$

$\Rightarrow \frac{\sin \mathrm{i}}{\sin \mathrm{r}}=2=\mu$.

Q. 16 (C)

If phase difference at point P is zero then $n_{1} d \sin \theta=n_{2} d \sin \theta^{\prime}$
$\Rightarrow \theta^{\prime}=37^{\circ}$

and as $\tan \theta^{\prime}=\frac{y}{D} \quad \Rightarrow y=-\frac{3}{4} m$
It is negative because upper path in medium n_{2} is longer than lower path in the same medium.
Q. 17 (D)

Path lengths in medium 2 are equal for point O . Therefore
path difference $=d \sin \theta$
$\lambda_{n_{1}}=0.3 \mathrm{~mm}, \quad \lambda_{n_{2}}=\frac{(0.3)\left(\frac{4}{3}\right)}{\frac{10}{9}}=0.36 \mathrm{~mm}$

$$
\begin{aligned}
& \Delta \mathrm{p}=\frac{\mathrm{d} \sin \theta \frac{4}{3}}{\frac{10}{9}}, \\
& \therefore \Delta \phi=\frac{2 \pi}{\lambda} \Delta \mathrm{p} \\
& \Delta \phi=\frac{2 \pi}{0.3\left(\frac{4 / 3}{10 / 9}\right)} \times\left(1 \times \frac{1}{2}\right)\left(\frac{4 / 3}{10 / 9}\right)=\frac{10 \pi}{3} \\
& I=I_{0}+I_{0}+2 I_{0} \cos \left(2 \pi+\frac{4 \pi}{3}\right)=I_{0}
\end{aligned}
$$

Q. 18 (A)

As we go up from point O, path difference will increase. At O , phase difference is $3 \pi+\frac{\pi}{3}$ and when it becomes 4π, there will be maximum. Extra path difference created in medium 2 must lead to $\frac{2 \pi}{3}$ phase difference.

$$
\frac{2 \pi}{\lambda_{\mathrm{a}}} \cdot \mathrm{~d} \sin \theta_{1} \cdot \mathrm{n}_{2}=\frac{2 \pi}{3}
$$

Using values $\sin \theta_{1}=\frac{3}{25} \Rightarrow \tan \theta_{1}=\frac{3}{\sqrt{616}}=\frac{y}{D}$

$$
\mathrm{y}=\frac{300}{2 \sqrt{154}} \mathrm{~cm}=\frac{150}{\sqrt{154}} \mathrm{~cm}
$$

Comprehension - 3 (Q. 19 to Q.21)

Q. 19 (ACD)
$\beta=\frac{\lambda D}{d} \lambda \uparrow \beta \uparrow$
$\xrightarrow[\lambda \uparrow]{\text { VIBGYOR }}$
Q. 20 (A,B,D)

Angular fringe width $=\frac{\beta}{D}=\frac{\lambda}{d}$
$\beta=\frac{\lambda D}{d}$
Q. 21 (B,D)

C is not correct
C.M.; does not change.

Q. 22 (A) q,r,s (B) p,q,r,s (C) q,r,s (D) p,q,r,s

Initially at a distance x from central maxima on screen is
$\frac{D \lambda}{d}$

$$
I=I_{0}+4 I_{0}+2 \sqrt{I_{0}} \sqrt{4 I_{0}} \cos \frac{2 \pi x}{\beta}, \text { where } \beta=
$$

$$
\frac{D \lambda}{d}
$$

$$
\mathrm{I}_{\max }=9 \mathrm{I}_{0} \text { and } \mathrm{I}_{\min }=\mathrm{I}_{0}
$$

(A) At points where intensity is $\frac{1}{9}$ th of maximum intensity, minima is formed
\therefore Distance between such points is $\beta, 2 \beta, 3 \beta, 4 \beta, \ldots$.
(B) At points where intensity is $\frac{3}{9}$ th of maximum
intensity, $\cos \frac{2 \pi x}{\beta}=-\frac{1}{2}$ or $x=\frac{\beta}{3}$.
\therefore Distance between such points is
$\frac{\beta}{3}, \frac{2 \beta}{3}, \beta, \beta+\frac{\beta}{3}, \beta+\frac{2 \beta}{3}, 2 \beta, \ldots .$.
(C) $\cos \frac{2 \pi x}{\beta}=0$ or $x=\frac{\beta}{4}$.
\therefore Distance between such points is
$\frac{\beta}{2}, \beta, \beta+\frac{\beta}{2}, 2 \beta, \ldots .$.
(D) $\cos \frac{2 \pi x}{\beta}=\frac{1}{2}$ or $x=\frac{\beta}{6}$.
\therefore Distance between such points is $\frac{\beta}{3}, \frac{2 \beta}{3}, \beta, \beta+$

$$
\frac{\beta}{3}, \beta+\frac{2 \beta}{3}, 2 \beta, \ldots \ldots
$$

NUMERICAL VALUE BASED

Q. 1 [0012]

$\frac{0.1}{h_{1}}=\frac{50}{50} \Rightarrow h_{1}=1 \mathrm{~mm}$
$\frac{\mathrm{L}+\mathrm{h}_{1}}{0.1}=\frac{80}{20} \Rightarrow \mathrm{~L}+\mathrm{h}_{1}=4 \mathrm{~mm}$

$$
\Rightarrow \quad \mathrm{L}=3 \mathrm{~mm}
$$

$$
\mathrm{B}=\frac{\lambda \mathrm{D}}{\mathrm{~d}}=\frac{5 \times 10^{-7} \times 1}{2 \times 10^{-3}}=2.5 \times 10^{-4} \mathrm{~m}
$$

$$
\mathrm{N}=\frac{\mathrm{L}}{\mathrm{~B}}=\frac{3 \times 10^{-3}}{2.5 \times 10^{-4}}=\frac{300}{25}=12
$$

Q. $2 \quad$ [0001]

The path difference at point P,

$$
\begin{aligned}
\Delta \mathrm{x} & =\left(\mathrm{SS}_{2}-\mathrm{SS}_{1}\right)+\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}\right) \\
& =\frac{\mathrm{dy}}{\mathrm{D}_{1}}+\frac{\mathrm{d}(\mathrm{~d} / 2)}{\mathrm{D}_{2}}
\end{aligned}
$$

For constructive interference,

$$
\begin{gathered}
\Delta x=\frac{d y}{D_{1}}+\frac{\mathrm{d}^{2}}{2 \mathrm{D}_{2}}=n \lambda \\
\frac{\left(10^{-3}\right)(0.5 \sin \pi \mathrm{t}) \times 10^{-3}}{1}+\frac{\left(10^{-3}\right)^{2}}{2 \times 2}=n \lambda \\
\left(0.5 \sin \left(\frac{\pi}{6}\right) \mathrm{t}\right) \times 10^{-6}+0.25 \times 10^{-6} \\
=\left(5000 \times 10^{-10}\right) n=0.5 \times \\
10^{-6} \mathrm{n}
\end{gathered}
$$

$$
\sin \left(\frac{\pi}{6}\right) t=\frac{0.5 n-0.25}{0.5}
$$

For the minimum value of $\mathrm{t}, n=1$.

$$
\begin{gathered}
\sin \left(\frac{\pi}{6}\right) t=\frac{1}{2} \\
\Rightarrow \quad\left(\frac{\pi}{6}\right) t=\frac{\pi}{6} \quad \text { or } \quad t=1 \mathrm{sec} .
\end{gathered}
$$

Q. $3 \quad[520 \mathrm{~nm}]$

$$
\therefore 2 t \mu=\left(\mathrm{n}+\frac{1}{2}\right) \lambda
$$

(for destructive interference)

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{t} \mu=\left(\mathrm{n}+\frac{1}{2}\right) \lambda \\
& \Rightarrow 2 \mathrm{t}(1.56)=\left(\mathrm{n}+\frac{1}{2}\right) \lambda
\end{aligned}
$$

$\Rightarrow 2 \times 0.25 \times 10^{-6} \times 1.56=\left(\mathrm{n}+\frac{1}{2}\right) \lambda$
$\therefore\left(\mathrm{n}+\frac{1}{2}\right) \lambda=7.8 \times 10^{-7}=780 \mathrm{~nm}$
$\lambda=\frac{780}{\mathrm{n}+\frac{1}{2}}$
$\mathrm{n}=0, \lambda=1560 \mathrm{~nm}$
$\mathrm{n}=1, \lambda=\frac{1560}{3}=520 \mathrm{~nm}$
$\mathrm{n}=2, \lambda=780 \times \frac{2}{5}=312 \mathrm{~nm}($ not possible $)$
Q. 4 [0001]

Reflected ray from upper surface would shift by $\lambda / 2$ only while reflected from lower surface would not have any shift.

$$
\begin{aligned}
& 2 \mu \mathrm{t}=\mathrm{n}_{1} \lambda_{1}=\mathrm{n}_{2} \lambda_{2} \\
\Rightarrow \quad & \left(\mathrm{n}_{1}=\mathrm{n}_{2}+1\right)
\end{aligned}
$$

as there is no minima in between these two wavelengths

$$
\begin{array}{ll}
& (\mathrm{n}+1)(512)=(\mathrm{n})(640) \\
& \mathrm{n}_{2}(640-512)=512 \\
& \mathrm{n}_{2}=4 \\
\text { So } \quad & 2 \times 1.28 \mathrm{t}=(4)(640) \\
& \mathrm{t}=\frac{4 \times 640}{2 \times 1.28}=1000 \mathrm{~nm}=1 \mu \mathrm{~m}
\end{array}
$$

Q. 5 [1100]
$\mathrm{d}=\mathrm{x} \theta$
$\mathrm{x}=\frac{\mathrm{n} \lambda}{2 \theta}=$ condition of dark fringe

$\mathrm{n}=0$, first dark fringe at join of plates $\mathrm{n}=4$, fifth dark fringe at fiber

$$
\begin{aligned}
& d=x \theta=\frac{4 \lambda}{2}=2 \lambda \\
& d=2 \times 550 \mathrm{~nm} \Rightarrow 1100 \mathrm{~nm}
\end{aligned}
$$

KVPY

PREVIOUS YEAR'S

Q. 1
$\mathrm{I}=\mathrm{I}_{0}\left(\cos ^{2} \phi\right)^{4}$
$=\mathrm{I}_{0} \times\left(\frac{3}{4}\right)^{4}=30 \%$ of I_{0}
Q. 2 (B)

Separation
Bright fringe $=\frac{\lambda D}{d}$
$\mathrm{f} \lambda=\mathrm{c}$
If f is doubled
λ become halved
$\therefore \beta$ become half
$\beta=\frac{1}{2}=0.5 \mathrm{~mm}$
Q. 3 (A)
$I_{\text {min }}=0$
$I_{\text {max }}=4 I_{0}$
$\mathrm{I}_{\mathrm{av}}=2 \mathrm{I}_{0}$
Q. 4 (C)
$\mathrm{I}_{0} \xrightarrow[\text { Polarizer }]{\text { First }} \mathrm{I}_{0} / 2 \xrightarrow[\text { IIpolarizer }]{\text { Malussaw }}\left(\frac{\mathrm{I}_{0}}{2}\right) \cos ^{2} 30^{\circ}$
Q. 5 (B)

$$
\beta=\frac{\lambda \mathrm{D}}{\mathrm{~d}}
$$

$$
\lambda=\frac{\mathrm{h}}{\mathrm{mV}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mq} \Delta \mathrm{~V}}}
$$

$\beta \propto \lambda \quad \therefore \beta \propto \frac{1}{\sqrt{\Delta \mathrm{~V}}}$ as $\Delta \mathrm{V}$ is double
$\therefore \beta$ is $\frac{1}{\sqrt{2}}$ times of $\beta_{\text {old }}$
$\therefore \beta_{\text {new }}=0.7 \beta=0.7 \mathrm{w}$
Q. 6 (B)

S and S_{1} are source of YDSE
$\theta=0.5 \times 10^{-3}$ radian (very small)
$\mathrm{D}=\mathrm{SO} \cos \theta+100$
$=20 \times 1+100$
$=120 \mathrm{~cm}$
$\mathrm{d}=2 \times S O \sin \theta$
$\Rightarrow 2 \times 20 \times \theta$
$\Rightarrow 40 \times 0.5 \times 10^{-3} \mathrm{~cm}$
$2 \times 10^{-2} \mathrm{~cm}$
$\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}=\frac{440 \times 10^{-6} \times 120 \times 10^{2}}{2 \times 10^{-2} \times 10^{2}}$
264×10^{-2}
$\Rightarrow 2.64 \mathrm{~mm}$
Q. 7 (A)

$\mathrm{I}_{0}=20 \mathrm{~W} / \mathrm{m}^{2}$
$\mathrm{I}_{1}=\frac{\mathrm{I}_{0}}{2}=\frac{20}{2}=10 \mathrm{~W} / \mathrm{m}^{2}$
$I_{2}=I_{1} \cos ^{2} 30^{\circ}$
$=10\left(\frac{\sqrt{3}}{2}\right)^{2}=10 \times \frac{3}{4}$
$=7.5 \mathrm{~W} / \mathrm{m}^{2}$
Q. 8 (C)
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\sqrt{2} \mathrm{I}_{1} \sqrt{2} \mathrm{I}_{2} \cos \phi$
$I=A^{2}+4 A^{2}+4 A^{2} \cos \phi=A 2(5+4 \cos \phi)$
$I_{0}=9 A^{2} \Rightarrow A^{2} \frac{I_{0}}{9}$
$\mathrm{I}=\frac{\mathrm{I}_{0}}{9}(5+4 \cos \phi)$
Q. 9 (C)

As $\mu=\mu_{0}+\frac{\mathrm{A}}{\lambda^{2}}$

$$
\mu_{\mathrm{red}}<\mu_{\mathrm{blue}}
$$

As reflected light is polarized incidence angle should be equal to Brewster angle

$$
\mathrm{i}_{\mathrm{a}}=\tan ^{-1}(\mu)
$$

$$
\text { so } \quad \theta_{B}>\theta_{R}
$$

Q. 10 (D)

At central maxima
Due to $400 \mathrm{~nm}=4 \mathrm{I}_{0}$
Due to $800 \mathrm{~nm}=4 \mathrm{~T}_{0}$
Total Intensity $=8 \mathrm{I}_{0}$

JEE-MAIN
 PREVIOUS YEAR'S

Q. 1
(1)
$\mathrm{I}_{\text {max }}=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
$I_{\min }=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$
$\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\frac{(\sqrt{2 \mathrm{x}}+1)^{2}}{(\sqrt{2 \mathrm{x}}-1)^{2}}$
$\frac{(\sqrt{2 x}+1)^{2}}{(\sqrt{2 x}-1)^{2}}-1$
$\frac{\frac{(\sqrt{2 x}+1)^{2}}{(\sqrt{2 x}-1)^{2}}-1}{\frac{(\sqrt{2 x}+1)^{2}}{(\sqrt{2 x}-1)^{2}}+1}$
$\Rightarrow \frac{2 \mathrm{x}+12 \sqrt{2}-2 \mathrm{x}-1+2 \sqrt{2} \mathrm{x}}{2 \mathrm{x}+1+2 \sqrt{2}+2 \mathrm{x}+1-2 \sqrt{2} \mathrm{x}}$
$\Rightarrow \frac{4 \sqrt{2} x}{4 x+2}=\left(\frac{2 \sqrt{2} x}{2 x+1}\right)$
Q. 2 (2)
$\sin \theta=\frac{1.22 \lambda}{D} \Rightarrow$ If D is increased $\Rightarrow \sin \theta$ decreased \therefore size of circular fringe will decrease Intensity will increase.
Q. 3

$$
\begin{align*}
\beta & =\frac{\lambda \mathrm{D}}{\mathrm{~d}}=\frac{500 \times 10^{-9} \times 1}{2 \times 10^{-3}} \tag{1}\\
& =2.5 \times 10^{-4}=0.25 \mathrm{~mm}
\end{align*}
$$

Q. 4 [3]
$\mathrm{I}=\frac{1}{2}\left(\varepsilon_{0} \mathrm{C}\right) \mathrm{E}_{0}^{2}=\frac{\text { Power }}{4 \pi(2)^{2}}$
$\therefore \quad \frac{1}{2} \times\left(4 \pi \varepsilon_{0}(\mathrm{c}) \mathrm{E}_{0}^{2}=\frac{1000 \times 1.2}{4} \times \frac{1}{100}\right.$
$\therefore \quad \frac{1}{2} \times \frac{3 \times 10^{8}}{9 \times 10^{9}} \times \mathrm{E}_{0}^{2}=3$
$\therefore \quad \mathrm{E}_{0}^{2}=180$
$\therefore \quad \mathrm{E}_{0}=13.41 \mathrm{~V} / \mathrm{m}$
$\approx 13 \mathrm{~V} / \mathrm{m}$
Q. 5 (1)
$\beta=\frac{\lambda D}{d}$
$\because \lambda_{\mathrm{V}}<\lambda_{\mathrm{R}}$
$\therefore \beta_{\mathrm{V}}<\beta_{\mathrm{R}}$
And there is no change in intensity of bright and dark fringes.
Q. 6 (3)
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{1}{3} \quad \mathrm{~A}_{1}=\mathrm{x}, \mathrm{A}_{2}=3 \mathrm{x}$
$\frac{I_{\text {max }}}{I_{\text {min }}}=\left(\frac{\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)^{2}}{\left(\mathrm{~A}_{1}-\mathrm{A}_{2}\right)^{2}}\right)=\frac{(4 \mathrm{x})^{2}}{(2 \mathrm{x})^{2}}=\frac{16}{4}=4: 1$
Q. 7 [75]
$\mathrm{I}=\mathrm{I}_{0} \cos ^{2}(\theta)$
$\mathrm{I}=100 \times \cos ^{2}\left(30^{\circ}\right)$
$I=100 \times\left(\frac{\sqrt{3}}{2}\right)^{2}$
$I=100 \times \frac{3}{4}$
$\mathrm{I}=75$ Lumens.

Q. 8 [600]

$\beta=\frac{\lambda D}{d}$
$\lambda=\frac{\beta \mathrm{d}}{\mathrm{D}}$

$$
\begin{aligned}
& \lambda=\frac{6 \times 10^{-3} \times 10^{-3}}{10} \\
& \lambda=6 \times 10^{7} \mathrm{~m}=600 \times 10^{-9} \mathrm{~m} \\
& \lambda=600 \mathrm{~nm}
\end{aligned}
$$

Q. 9 [3]
$\mathrm{c} \epsilon_{0} \mathrm{E}^{2}=\frac{100}{4 \pi \times 3^{2}}$
$\mathrm{c} \epsilon_{0}\left(\sqrt{\frac{\mathrm{x}}{5}} \mathrm{E}\right)^{2}=\frac{60}{4 \pi \times 3^{2}}$
$\Rightarrow \frac{x}{5}=\frac{3}{5}$
$\Rightarrow \mathrm{x}=3$
Q. 10 (2)
$\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}=\frac{5890 \times 10^{-10} \times 0.5}{0.5 \times 10^{-3}}$
$=589 \times 10-6 \mathrm{~m}$
Distance between first and third bright fringe is 2β
$=2 \times 589 \times 10^{-6} \mathrm{~m}$
$=1178 \times 10^{-6} \mathrm{~m}$
Ans. (2)

Q. 11 (1)

Resolving power $(\mathrm{RP}) \propto \frac{1}{\lambda}$
$\lambda=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\mathrm{mv}}$
So $(R P) \propto \frac{m v}{h}$
$R P \propto P$
$R P \propto m v$
$R P \propto m$
Q. 12 [6]
$\frac{\Delta \lambda}{\lambda} \mathrm{c}=\mathrm{v}$
$\Delta \lambda=\frac{\mathrm{v}}{\mathrm{c}} \times \lambda=\frac{286}{3 \times 10^{5}} \times 630 \times 10^{-9}=6 \times 10^{-10} \mathrm{~m}$
Q. 13 (1)
Q. 14 (2)
Q. 15 (2)
Q. 16 (4)
Q. 17 [30]
Q. 18 [300]
Q. 19 [1]

Given amplitude \propto slit width
Also intensity $\propto(\text { Amplitude })^{2} \propto(\text { Slit width })^{2}$
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\left(\frac{3}{1}\right)^{2}=9 \Rightarrow \mathrm{I}_{1}=9 \mathrm{I}_{2}$
$\frac{\mathrm{I}_{\text {min }}}{\mathrm{I}_{\text {max }}}=\left(\frac{\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}}{\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}}\right)^{2}=\left(\frac{3-1}{3+1}\right)^{2}=\frac{1}{4}=\frac{\mathrm{x}}{4}$
$\Rightarrow \mathrm{x}=1.00$

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (D)

$\beta=\frac{\lambda D}{d}$
$\overrightarrow{\text { VIBGYOR }} \lambda$ increase
$\lambda_{\mathrm{R}}>\lambda_{\mathrm{G}}>\lambda_{\mathrm{B}}$
So $\beta_{\mathrm{R}}>\beta_{\mathrm{G}}>\beta_{\mathrm{B}}$
Q. 2 (B)

For half of maximum intensity
$2 \mathrm{I}_{0}=\mathrm{I}_{0}+\mathrm{I}_{0}+2 \mathrm{I}_{0} \cos \theta$
θ (Phase difference) $=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \ldots \ldots \ldots$
Path difference is $\frac{\lambda}{4}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4} \ldots \ldots . .\left(\frac{2 n+1}{4} \lambda\right)$
Q. 3 (A, B, C)
$\beta=\frac{\lambda D}{d}$
$\beta \propto \lambda$

$$
\because \lambda_{2}>\lambda_{1} \quad \therefore \beta_{2}>\beta_{1}
$$

No of fringes in a given width $(\mathrm{m})=\frac{\mathrm{y}}{\beta} \Rightarrow$
$\mathrm{m} \propto \frac{1}{\beta} \Rightarrow \mathrm{~m}_{2}<\mathrm{m}_{1}$
$3^{\text {rd }}$ maximum of $\lambda_{2}=\frac{3 \lambda_{2} D}{d}=\frac{1800 D}{d}$
$5^{\text {th }}$ minimum of $\lambda_{1}=\frac{9 \lambda_{1} D}{2 d}=\frac{1800 \mathrm{D}}{d}$
So, $3^{\text {rd }}$ maxima of λ_{2} will meet with $5^{\text {th }}$ minimum of λ_{1}
Angular sepration $=\frac{\lambda}{d} \Rightarrow$ Angular seperation for λ_{1} will be lesser

Q. 4 (C,D)

Since $S_{1} S_{2}$ line is perpendicular to screen shape of pattern is concentric semicircle At O,
$\frac{2 \pi}{\lambda}\left(\mathrm{~S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}\right)=\frac{2 \pi \times 0.6003 \times 10^{-3}}{600 \times 10^{-9}}=2001 \pi$

Q. 7

(A)

(A)

$\lambda=600 \mathrm{~nm}$
at $\mathrm{P}_{1} \quad \Delta \mathrm{x}=0$
at P_{2}
$\Delta \mathrm{x}=1.8 \mathrm{~mm}=\mathrm{n} \lambda$
No. maximum will be
$=\mathrm{n}=\frac{\Delta \mathrm{x}}{\lambda}=\frac{1.8 \mathrm{~mm}}{600 \mathrm{~nm}}=3000$
at P_{2}
$\Delta x=3000 \lambda$
hence bright fringe will be formed.
at $P_{2} 3000^{\text {th }}$ maxima is formed.
for ' D ' option $\Delta x=d \sin \theta$
$\mathrm{d} \Delta \mathrm{x}=\mathrm{d} \cos \theta \cdot \mathrm{d} \theta \mathrm{R} \lambda=\mathrm{d} \cos \theta \cdot \mathrm{R} \theta$
$R d \theta=\frac{R \lambda}{d \cos \theta}$ as we move from P_{1} to P_{2}
$\theta \uparrow \cos \theta \downarrow \mathrm{Rd} \theta$
Q. 6 (C)
(1) $\Delta \mathrm{x}=\mathrm{d} \sin \alpha=\mathrm{d} \alpha$ (as α is very small)
$\alpha=\frac{.36}{180}=2\left(2 \times 10^{-3}\right) \mathrm{rad}$
$\frac{\Delta x}{\lambda}=\frac{\left(3 \times 10^{-4}\right)\left(2 \times 10^{-3}\right)}{6 \times 10^{-7}}=1$
so constructive interference
(2) $\beta=\frac{D \lambda}{d}$
(3) $\Delta x_{p}=d \alpha+\frac{d y}{D}$

$$
=3 \times 10^{-4}\left(2 \times 10^{-3}+11 \times 10^{-3}\right)=39 \times 10^{-7}
$$

$\frac{\Delta \mathrm{x}_{\mathrm{p}}}{\lambda}=\frac{39 \times 10^{-7}}{6 \times 10^{-7}}=6.5$ so destructive

